ABSTRACT Gardnerella vaginalis is a Gram-variable bacterium associated with bacterial vaginosis, a common vaginal inflammation in women of reproductive age. This study reports the whole-genome sequencing for the clinical isolate strain ATCC 49145. The draft genome is composed of 21 contigs containing 1,325 protein-coding sequences, 45 tRNAs and a single tmRNA (SsrA).
Cryptococcus neoformans: (H99W) was serially passaged in the invertebrate wax moth Galleria mellonella fifteen times to study how fungal virulence evolves under selection and whether those adaptations affect virulence. The G. mellonella passaged strain (P15) and the pre-passage H99W strains were used to infect three different host models of C. neoformans: C. elegans, G. mellonella, and Balb/c mice. While there was no difference in survival in the invertebrate models, P15 killed mice faster than H99W through both intratracheal and intravenous routes of infection and mice infected intravenously with P15 showed higher fungal burden in the brain. Characterization of the major virulence factors of C. neoformans found that P15 had increased capsule size, GXM release, and melanization. Whole genome sequencing of P15 and H99W revealed two mutations in P15, an insertion in the promoter region of NADH dehydrogenase (CNAG_09000) and an insertion in the LMP1 gene (CNAG_06765). Both ATP production and metabolic rate were higher in P15 compared to H99W. Quantitative RT-PCR suggested that the increased ATP was due to increased RNA levels of NADH dehydrogenase. Thus, adaptation to growth in hemocytes resulted in increased production of ATP, increased metabolic rate, and increased virulence in mice. This was likely due to differential expression of virulence factors, which skewed the host immune response to a less efficient Th2 response, with higher levels of IL-4, IL-10, and TNF-α in the brain. Overall, serial passage experiments have increased our understanding of how this yeast evolves under innate immune selection pressure.
SUMMARY— Cell disruption, resulting from different freezing times, was evaluated by studying the composition and amount of drip obtained from broiler breast muscles after freezing and thawing. The degree of cell disruption was estimated after measuring the amount of drip released and by total solids, nitrogen and deoxyribonucleic acid (DNA) concentration of the drip. Initial drip release was noted approximately 5% hr after the frozen meat was placed in a refrigerator at 16°C, and collections were made through the 18th hr. Degree of cell disruption was not uniformly related to changes in freezing times of 0.5 to 1,494 min. In general, increased freezing time resulted in greater cell disruption; however, several exceptions were noted. Cell disruption was relatively severe for tissues frozen in 18 to 35, 87, and 252 min, and relatively low for tissues frozen in times of 1 to 18 min, 132 to 22.5 min, and longer than 1,044 min. All frozen and thawed muscles had higher contents of total solids, nitrogen and DNA than unfrozen controls.
Escherichia coli Δglk ΔmanZ ΔptsG glucose- strains that lack the glucose phosphotransferase system (PTS) and the mannose PTS as well as glucokinase have been widely used by researchers studying the PTS. In this study we show that both fast- and slow-growing spontaneous glucose+ revertants can be readily obtained from Δglk ΔmanZ ΔptsG glucose- strains. All of the fast-growing revertants either altered the N-acetylglucosamine PTS or caused its overproduction by inactivating the NagC repressor protein, which regulates the N-acetylglucosamine PTS, and these revertants could utilize either glucose or N-acetylglucosamine as a sole carbon source. When a ΔnagE deletion, which abolishes the N-acetylglucosamine PTS, was introduced into the Δglk ΔmanZ ΔptsG glucose- strains, fast-growing revertants could no longer be isolated. Based on our results and other studies, it is clear that the N-acetylglucosamine PTS is the most easily adaptable PTS for transporting and phosphorylating glucose, other than the glucose PTS and mannose PTS, which are the primary glucose transport systems. While the slow-growing glucose+revertants were not characterized, they were likely mutations that other researchers have observed before and affect other PTSs or sugar kinases.