Abstract Reducing the scavenging capacity of reactive oxygen species (ROS) and elevating ROS production are two primary goals of developing novel sonosensitizers for sonodynamic therapy (SDT). Hence, ultrathin 2D Bi 2 MoO 6 –poly(ethylene glycol) nanoribbons (BMO NRs) are designed as piezoelectric sonosensitizers for glutathione (GSH)‐enhanced SDT. In cancer cells, BMO NRs can consume endogenous GSH to disrupt redox homeostasis, and the GSH‐activated BMO NRs (GBMO) exhibit an oxygen‐deficient structure, which can promote the separation of electron–hole pairs, thereby enhancing the efficiency of ROS production in SDT. The ultrathin GBMO NRs are piezoelectric, in which ultrasonic waves introduce mechanical strain to the nanoribbons, resulting in piezoelectric polarization and band tilting, thus accelerating toxic ROS production. The as‐synthesized BMO NRs enable excellent computed tomography imaging of tumors and significant tumor suppression in vitro and in vivo. A piezoelectric Bi 2 MoO 6 sonosensitizer‐mediated two‐step enhancement SDT process, which is activated by endogenous GSH and amplified by exogenous ultrasound, is proposed. This process not only provides new options for improving SDT but also broadens the application of 2D piezoelectric materials as sonosensitizers in SDT.
As the least toxic heavy metal, monoelemental bismuth nanomaterials with several superiorities are the ideal theranostic agents. However, bismuth nanoparticles are easily oxidized by oxygen in air or media, limiting their clinical application. In contrast, the oxidization of Bi0 to Bi3+ can activate the chemodynamic therapy (CDT) by transferring endogenous H2O2 into •OH. Herein, a well-designed Bi-DMSNs@PCM nanosystem was prepared via in situ growth of Bi nanodots and a coating of phase-change material (PCM) on the surface of dendritic mesoporous silica nanoparticles (DMSNs). The coated PCM protects the Bi nanodots from oxidation by keeping them in the Bi0 state for more than 15 d. When irradiated using the near infrared-II (NIR-II) laser with a low power density (0.5 W/cm2), the heat generated from the Bi nanodots melts the PCM shell to trigger CDT through a Fenton-like reaction, accompanied by heat-induced photothermal therapy (PTT). Notably, the CDT can also compensate for the reduced PTT effect caused by the oxidation of Bi nanodots, and a satisfactory treatment effect is realized. Additionally, photoacoustic and computed tomography imaging properties were obtained. Our strategy transfers the detrimental self-oxidation of bismuth to a beneficial therapeutic mode, enhancing the potential of Bi for clinical use.
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
The development of the advanced imaging probe holds the key to the achievement of target imaging and metastasis tracing. The bismuth based nanoprobe has been regarded as the most promising X-ray computed tomography probe due to its largest X-ray attenuation coefficient. Accordingly, the bismuth nanoparticles with controllable size distribution and light weight have been fabricated through a one pot synthesis strategy. The surface modification can be easily conducted with the polyethylene glycol to make the nanoparticles hydrosoluble and biocompatible. More importantly, the Bi nanoparticles can be excited by light to conduct excitation wavelength dependent emission in the visible (Vis) and near-infrared (NIR) region, which makes it possible to utilize it for fluorescence imaging. Under the detection of the multimode CT/fluorescence imaging, the long circulation time of the Bi nanoparticles and its specific accumulation at the liver and intestine can be visually displayed. The facile and large scale preparation method, unique luminescence property, and multimode imaging function endow the Bi nanoparticles with promising applications in clinical diagnosis.
The therapeutic effect of traditional chemodynamic therapy (CDT) agents is severely restricted by their weakly acidic pH and glutathione (GSH) overexpression in the tumor microenvironment. Here, fusiform-like copper(II)-based tetrakis(4-carboxy phenyl)porphyrin (TCPP) nanoscale metal–organic frameworks (nMOFs) were designed and constructed for the first time (named PCN-224(Cu)-GOD@MnO2). The coated MnO2 layer can not only avoid conjugation of glucose oxidase (GOD) to damage normal cells but also catalyzes the generation of O2 from H2O2 to enhance the oxidation of glucose (Glu) by GOD, which also provides abundant H2O2 for the subsequent Cu+-based Fenton-like reaction. Meanwhile, the Cu2+ chelated to the TCPP ligand is converted to Cu+ by the excess GSH in the tumor, which reduces the tumor antioxidant activity to improve the CDT effect. Next, the Cu+ reacts with the plentiful H2O2 by enzyme catalysis to produce a toxic hydroxyl radical (•OH), and singlet oxygen (1O2) is synchronously generated from combination with Cu+, O2, and H2O via the Russell mechanism. Furthermore, the nanoplatform can be used for both TCPP-based in vivo fluorescence imaging and Mn2+-induced T1-weighted magnetic resonance imaging. In conclusion, fusiform-like PCN-224(Cu)-GOD@MnO2 nMOFs facilitate the therapeutic efficiency of chemodynamic and starvation therapy via combination with relief hypoxia and GSH depletion after acting as an accurate imaging guide.
Thermoelectric therapy has emerged as a promising treatment strategy for oncology, but it is still limited by the low thermoelectric catalytic efficiency at human body temperature and the inevitable tumor thermotolerance. We present a photothermoelectric therapy (PTET) strategy based on triphenylphosphine-functionalized Cu
Mitochondria are the "power plant" of the cell, providing a constant source of energy, and are involved in a variety of intracellular signaling pathways. Among these pathways, Ca2+ homeostasis is closely related to the normal function of mitochondria. By destroying the Ca2+ steady state of mitochondria and disrupting their multiple cellular activities, tumor cell killing can be achieved. In addition, the presence of an intracellular oxidative stress state triggers the closure of cellular calcium channels, which leads to intracellular Ca2+ retention and enrichment. We designed a targeted and tumor microenvironment (TME)-responsive CaO2-based nanosystem that can selectively target cancer cells for pH-controlled degradation and drug release, alter cellular physiological mechanisms by disrupting Ca2+ homeostasis in an artificial manner, and introduce mitochondrial Ca2+ excess-mediated apoptosis. Meanwhile, the production of Ca(OH)2 will raise the pH of the microenvironment and subsequently promote the oxidation process of glutathione by H2O2 released from CaO2 degradation, achieving the goal of remodeling TME. Moreover, calcium overload of tumor cells and calcification of tissues can both inhibit tumor growth and act as a contrast agent for computed tomography imaging.
The development of near-infrared (NIR) laser triggered phototheranostics for multimodal imaging-guided combination therapy is highly desirable. However, multiple laser sources, as well as inadequate therapeutic efficacy, impede the application of phototheranostics. Here, we develop an all-in-one theranostic nanoagent PEGylated DCNP@DMSN-MoOx NPs (DCDMs) with a flower-like structure fabricated by coating uniformly sized down-conversion nanoparticles (DCNPs) with dendritic mesoporous silica (DMSN) and then loading the ultrasmall oxygen-deficient molybdenum oxide nanoparticles (MoOx NPs) inside through an electrostatic interaction. Owing to the doping of Nd ions, when excited by an 808 nm laser, DCNPs emit bright NIR-II emissions (1060 and 1300 nm), which have characteristic high spatial resolution and deep tissue penetration. In terms of treatment, MoOx NPs could be specifically activated by excessive hydrogen peroxide (H2O2) in the tumor microenvironment, thus generating 1O2 via the Russell mechanism. In addition, the excessive glutathione (GSH) in the tumor cells could be depleted through the Mo-mediated redox reaction, thus effectively decreasing the antioxidant capacity of tumor cells. Importantly, the excellent photothermal properties (photothermal conversion efficiency of 51.5% under an 808 nm laser) synergistically accelerate the generation of 1O2. This cyclic redox reaction of molybdenum indeed ensured the high efficacy of tumor-specific therapy, leaving the normal tissues unharmed. MoOx NPs could also efficiently catalyze tumor endogenous H2O2 into a considerable amount of O2 in an acidic tumor microenvironment, thus relieving hypoxia in tumor tissues. Moreover, the computed tomography (CT) and T1-weighted magnetic resonance imaging (MRI) effect from Gd3+ and Y3+ ions make DCNPs act as a hybrid imaging agent, allowing comprehensive analysis of tumor lesions. Both in vitro and in vivo experiments validate that such an "all-in-one" nanoplatform possesses desirable anticancer abilities under single laser source irradiation, benefiting from the NIR-II fluorescence/CT/MR multimodal imaging-guided photothermal/chemodynamic synergistic therapy. Overall, our strategy paves the way to explore other noninvasive cancer phototheranostics.
Colorectal cancer is a common clinical malignant tumor of the digestive tract, and intestinal flora has played an important role in the development of colorectal cancer. Bifidobacteria, as one of the main dominant florae in intestinal tract, can inhibit the occurrence and development of colorectal cancer through various mechanisms. Recent studies have shown that traditional Chinese medicine can regulate the abundance of bifidobacteria in intestinal tract and exhibit anti-tumor effects on colorectal cancer. Detailed investigations have revealed that the mechanisms of bifidobacteria in the treatment of colorectal cancer involve three aspects: the production of short-chain fatty acids, the regulation of the body's immunity, and the regulation of cell apoptosis and differentiation. In this review, we provide an updated summary of recent advances in our understanding of the mechanisms by which traditional Chinese medicine regulate intestinal flora to inhibit colorectal cancer development and metastasis.