Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.
Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr-PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr-PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr-PE 545, in a clade with PC-containing Chroomonas species. A discriminant analysis-based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell-1 , the wavelength of PBP maximal absorption, and habitat. Non-PBP pigments (alloxanthin, chl-a, chl-c2 , α-carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade-offs in investments in PBPs vs. chlorophylls (a +c2 ).
Summary 1. The Daphnia pulex‐pulicaria species complex has been proposed as an example of rapid ecological speciation, associated with divergence along the gradient of waterbody size from temporary ponds to deep, stratified lakes. However, this divergence is incomplete, and thus represents an opportunity to study ecological divergence as it is occurring. 2. Dynamics of twelve populations of Daphnia in the pulex‐pulicaria species complex were monitored over 1 year. Six temporary pond populations and six permanent lake populations were compared to evaluate demographic differences that may contribute to ecological divergence in this complex. 3. Pond populations experienced greater changes in density, which were reflected in more extreme growth rates, higher birth rates and higher mortality rates than those of lake populations. 4. Mitochondrial DNA was isolated from up to three clones from each population, the D‐loop of the control region was sequenced, and a phylogenetic tree was constructed. This tree revealed two strongly supported clades. The clades were not congruent with habitat type and nominal status, indicating that interhabitat gene flow occurs easily and that the nominal taxa are incompletely diverged. 5. Published reports of genetic life history differences in the D. pulex‐pulicaria complex are consistent with the demographic differences reported here. This suggests that ecological differences between the habitats are selectively maintaining trait differences despite the possibility for genetic exchange. Thus, these taxa may be at the inception of ecological speciation.
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator-induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild-caught and third-generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild-caught specimens did not differ in eye size across all lakes. However, third-generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.
We know very little about aging (senescence) in natural populations, and even less about plant aging. Demographic aging is identified by an increasing rate of mortality following reproductive maturity. In natural populations, quantifying aging is often confounded because changes in mortality may be influenced by both short‐ and long‐term environmental fluctuations as well as age‐dependent changes in performance. Plants can be easily marked and monitored longitudinally in natural populations yet the age‐dependent dynamics of mortality are not known. This study was designed to determine whether a plant species, Plantago lanceolata , shows demographic aging in its natural environment. A large, multiple‐cohort design was used to separate age‐independent and age‐dependent processes. Seven years of results show environmental influences on mortality as evidenced by synchronous changes in mortality across four cohorts over time. Age‐dependent mortality was found through an age‐by‐environment interaction when the oldest cohorts had significantly higher mortality relative to the younger cohorts during times of stress. Neither size nor quantity of reproduction could explain this variation in mortality across cohorts. These results demonstrate demographic senescence in a natural population of plants.