Persistence of Antibody after mRNA-1273 Vaccination A total of 33 participants who received both doses of the Moderna mRNA-1273 vaccine against SARS-CoV-2 had blood drawn over a period of 6 months ...
A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.Funding Information: This research was supported by the Indian Council of Medical Research VIR/COVID-19/02/2020/ECD-1 (A.C.). S.K. is supported through DBT/Wellcome Trust India Alliance Early Career Fellowship grant IA/E/18/1/504307. Both E.A.O and A.P are supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (under award numbers 75N92019P00328, U54EB015408, and U54EB027690) as part of the Rapid Acceleration of Diagnostics (RADx) initiative. A.P. is 17 also supported through CCHI grant 5U19 AI14237-04 (subaward 000520244-SP008-SC014). Both K.N. and E.S.R. are supported through Dengue Translational Research Consortia National Biopharma Mission BT/NBM099/02/18 (A.C.). K.G. was supported through DBT grant BT/PR30260/MED/15/194/2018 (A.C, K.M). C.W.D. is supported through the National Institute of Allergy and Infectious Diseases (NIAID) U19 AI142790, Consortium for Immunotherapeutics against Emerging Viral Threats. Work done in M.S.S. lab was funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under HHSN272201400004C (NIAID Centers of Excellence for Influenza Research and Surveillance, CEIRS). This work was supported in part by grants (NIH P51OD011132 and NIH/NIAID CEIRR under contract 75N93021C00017 to Emory University) from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) and by intramural funding from the NIAID. This work was also supported in part by the Emory Executive Vice President for Health Affairs Synergy Fund award, COVID-Catalyst-I3 Funds from the Woodruff Health Sciences Center and Emory School of Medicine, the Pediatric Research Alliance Center for Childhood Infections and Vaccines and Children’s Healthcare of Atlanta, and Woodruff Health Sciences Center 2020 COVID-19 CURE Award.Declaration of Interests: The International Centre for Genetic Engineering and Biotechnology, New Delhi, India, Emory Vaccine Center, Emory University, Atlanta, USA, Indian Council of Medical Research, India and Department of Biotechnology, India have filed a provisional patent application on human monoclonal antibodies mentioned in this study on which A.C., S.K., M.K.K., and A.S. are inventors (Indian patent 202111052088). N.C., H.V., A.S.N., and J.D.R. are co-inventors on a pending patent related to SARS-CoV-2 WT, Delta and Omicron spike protein structures and ACE2 Interactions from BoAb assay technology filed by Emory University (US Patent Application No. 63/265,361, Filed on 14 December 2021). M.S.S. has previously served as a consultant for Moderna and Ocugen. J.D.R. is a Co-founder and Consultant for Cambium Medical Technologies. J.D.R. is a Consultant for Secure Transfusion Services. All other authors declare no competing interests.
The factors that control the development of an effective immune response to the recently emerged SARS-CoV-2 virus are poorly understood. In this study, we provide a cross-sectional analysis of the dynamics of B cell responses to SARS-CoV-2 infection in hospitalized COVID-19 patients. We observe changes in B cell subsets consistent with a robust humoral immune response, including significant expansion of plasmablasts and activated receptor-binding domain (RBD)-specific memory B cell populations. We observe elevated titers of Abs to SARS-CoV-2 RBD, full-length Spike, and nucleoprotein over the course of infection, with higher levels of RBD-specific IgG correlating with increased serum neutralization. Depletion of RBD-specific Abs from serum removed a major portion of neutralizing activity in most individuals. Some donors did retain significant residual neutralization activity, suggesting a potential Ab subset targeting non-RBD epitopes. Taken together, these findings are instructive for future vaccine design and mAb strategies.
Abstract The SARS-CoV-2 vaccine BBV152/Covaxin is well-tolerated and was shown to be 77.8% efficacious against symptomatic and 93.4% efficacious against severe symptomatic COVID-19 disease in adults. Previous studies have shown that sera from Covaxin vaccinated individuals have neutralizing activity against B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), B.1.1.28 (Zeta), and B.1.617.1 (Kappa) SARS-CoV-2 variants. The B.1.1.529 variant (Omicron) recently emerged in November 2021 and has spread throughout the world. The Omicron variant has more than 30 mutations within the spike protein that could impact vaccine-mediated immunity. We used a live virus neutralization assay to evaluate the neutralizing activity against the Omicron variant of sera collected from subjects who received a booster dose (6-month after primary series last dose) of Covaxin. We found that sera from Covaxin boosted individuals showed neutralizing activity against D614G (vaccine strain), Delta, and Omicron variants. One hundred percent of boosted subjects showed neutralizing activity against the Delta variant while over 90% of boosted subjects showed neutralizing activity against the Omicron variant. These findings show that a booster dose of Covaxin can generate robust neutralizing antibody responses against the Omicron variant.
SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies. One targets the N-terminal domain (NTD), one recognizes an epitope in S2, and 11 bind the receptor-binding domain (RBD). Three anti-RBD neutralizing antibodies cross-neutralize SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency and antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. All four cross-neutralizing antibodies neutralize the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.
Abstract Despite the development and deployment of antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. The recent emergence of B.1.1.529, the Omicron variant1,2, which has more than 30 mutations in the spike protein, has raised concerns for escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in pre-clinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of multiple B.1.1.529 Omicron isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2) expressing mice and hamsters. Despite modeling and binding data suggesting that B.1.1.529 spike can bind more avidly to murine ACE2, we observed attenuation of infection in 129, C57BL/6, and BALB/c mice as compared with previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. Although K18-hACE2 transgenic mice sustained infection in the lungs, these animals did not lose weight. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease, and pathology with B.1.1.529 also were milder compared to historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from multiple independent laboratories of the SAVE/NIAID network with several different B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.
Abstract The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naïve vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.