Abstract. We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates 90 % of the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4 yr−1), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4 yr−1) mainly from landfills and the energy sector (12 Gg CH4 yr−1), which was dominated by emissions from natural gas distribution. Compared with the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4 yr−1), making up only 3% of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between −1.5 and 0 Gg CH4 yr−1), while forest soils are a CH4 sink (approx. −2.8 Gg CH4 yr−1), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and an European (TNO/MACC) CH4 inventory. This new spatially explicit emission inventory for Switzerland will provide valuable input for regional-scale atmospheric modeling and inverse source estimation.
Abstract. Recently, instruments became available on the market that provide the possibility to perform eddy covariance flux measurements of CH4 and many other trace gases, including the traditional CO2 and H2O. Most of these instruments employ laser spectroscopy, where a cross-sensitivity to H2O is frequently observed leading to an increased dilution effect. Additionally, sorption processes at the intake tube walls modify and delay the observed H2O signal in closed-path systems more strongly than the signal of the sampled trace gas. Thereby, a phase shift between the trace gas and H2O fluctuations is introduced that dampens the H2O flux observed in the sampling cell. For instruments that do not provide direct H2O measurement in the sampling cell, transfer functions from externally measured H2O fluxes are needed to estimate the effect of H2O on trace gas flux measurements. The effects of cross-sensitivity and the damping are shown for an eddy covariance setup with the Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Research Inc.) that measures CO2, CH4, and H2O fluxes. This instrument is technically identical with the Fast Methane Analyzer (FMA, Los Gatos Research Inc.) that does not measure H2O concentrations. Hence, we used measurements from a FGGA to derive a modified correction for the FMA accounting for dilution as well as phase shift effects in our instrumental setup. With our specific setup for eddy covariance flux measurements, the cross-sensitivity counteracts the damping effects, which compensate each other. Hence, the new correction only deviates very slightly from the traditional Webb, Pearman, and Leuning density correction, which is calculated from separate measurements of the atmospheric water vapor flux.
Table 2. Precipitation sums and relative deviations from the long-term means (1981–2010) for the year 2011. Deviations for 2010 are reported for comparison. Long-term data were derived from nearby reference stations by MeteoSwiss while data for 2010 and 2011 were measured directly at the sites. Abstract Since the European summer heat wave of 2003, considerable attention has been paid to the impacts of exceptional weather events on terrestrial ecosystems. While our understanding of the effects of summer drought on ecosystem carbon and water vapour fluxes has recently advanced, the effects of spring drought remain unclear. In Switzerland, spring 2011 (March–May) was the warmest and among the driest since the beginning of meteorological measurements. This study synthesizes Swiss FluxNet data from three grassland and two forest ecosystems to investigate the effects of this spring drought. Across all sites, spring phenological development was 11 days earlier in 2011 compared to the mean of 2000–2011. Soil moisture related reductions of gross primary productivity (GPP) were found at the lowland grassland sites, where productivity did not recover following grass cuts. In contrast, spring GPP was enhanced at the montane grassland and both forests (mixed deciduous and evergreen). Evapotranspiration (ET) was reduced in forests, which also substantially increased their water-use efficiency (WUE) during spring drought, but not in grasslands. These contrasting responses to spring drought of grasslands compared to forests reflect different adaptive strategies between vegetation types, highly relevant to biosphere–atmosphere feedbacks in the climate system.
Turf-grass lawns are ubiquitous in the United States. However direct measurements of land–atmosphere fluxes using the eddy-covariance method above lawn ecosystems are challenging due to the typically small dimensions of lawns and the heterogeneity of land use in an urbanised landscape. Given their typically small patch sizes, there is the potential that CO2 fluxes measured above turf-grass lawns may be influenced by nearby CO2 sources such as passing traffic. In this study, we report on two years of eddy-covariance flux measurements above a 1.5 ha turf-grass lawn in which we assess the contribution of nearby traffic emissions to the measured CO2 flux. We use winter data when the vegetation was dormant to develop an empirical estimate of the traffic effect on the measured CO2 fluxes, based on a parametrised version of a three-dimensional Lagrangian footprint model and continuous traffic count data. The CO2 budget of the ecosystem was adjusted by 135gCm−2 in 2007 and by 134gCm−2 in 2008 to determine the natural flux, even though the road crossed the footprint only at its far edge. We show that bottom-up flux estimates based on CO2 emission factors of the passing vehicles, combined with the crosswind-integrated footprint at the distance of the road, agreed very well with the empirical estimate of the traffic contribution that we derived from the eddy-covariance measurements. The approach we developed may be useful for other sites where investigators plan to make eddy-covariance measurements on small patches within heterogeneous landscapes where there are significant contrasts in flux rates. However, we caution that the modelling approach is empirical and will need to be adapted individually to each site.
For regional‐scale investigations of greenhouse gas budgets the spatially explicit information from local emission sources is needed, which then can be compared with flux measurements. Here we present the first validation of a section of a spatially explicit CH 4 emission inventory of Switzerland. The validation was done for the agriculturally dominated Reuss Valley using measurements from a low‐flying aircraft (50–500 m above ground level). We distributed national emission estimates to a grid with 500 m cell size using available geostatistical data. Validation flux measurements were obtained using the eddy covariance (EC) technique and the boundary layer budgeting (BLB) approach that only uses the mean concentrations of the same aircraft transects. Inventory estimates for the flux footprint of the aircraft measurements were lowest (median 0.40 μg CH 4 m −2 s −1 ), and BLB fluxes were highest (1.02 μg CH 4 m −2 s −1 ) for the Reuss Valley, with EC fluxes in between (0.62 μg CH 4 m −2 s −1 ). Flux estimates from measurements and inventory are within the same order of magnitude, but measured fluxes were significantly larger than the inventory emission estimates. The differences are larger than the uncertainties associated with storage of manure, temperature dependence of emissions, diurnal cycle of enteric fermentation by cattle, and the limitations of the inventory that only covers ≥90% of all expected methane emissions. From this we deduce that it is not unlikely that the Swiss CH 4 emission inventory estimates are too low.
Since the European summer heat wave of 2003, considerable attention has been paid to the impacts of exceptional weather events on terrestrial ecosystems. While our understanding of the effects of summer drought on ecosystem carbon and water vapour fluxes has recently advanced, the effects of spring drought remain unclear. In Switzerland, spring 2011 (March–May) was the warmest and among the driest since the beginning of meteorological measurements. This study synthesizes Swiss FluxNet data from three grassland and two forest ecosystems to investigate the effects of this spring drought. Across all sites, spring phenological development was 11 days earlier in 2011 compared to the mean of 2000–2011. Soil moisture related reductions of gross primary productivity (GPP) were found at the lowland grassland sites, where productivity did not recover following grass cuts. In contrast, spring GPP was enhanced at the montane grassland and both forests (mixed deciduous and evergreen). Evapotranspiration (ET) was reduced in forests, which also substantially increased their water-use efficiency (WUE) during spring drought, but not in grasslands. These contrasting responses to spring drought of grasslands compared to forests reflect different adaptive strategies between vegetation types, highly relevant to biosphere–atmosphere feedbacks in the climate system.