Abstract Vaccinia virus (VACV) elicits a robust CD8 T cell response that plays an important role in host resistance. To date, there is little information on the molecules that are essential to generate large pools of VACV-specific effector CD8 T cells. In this study, we show that the adaptor molecule MyD88 is critical for the magnitude of primary CD8 T cell responses to both dominant and subdominant VACV epitopes. MyD88−/− mice exhibit profound reduction in CD8 T cell expansion and antiviral cytokine production. Surprisingly, the defect was not due to impaired APC function, as MyD88−/− dendritic cells matured normally and were able to promote strong CD8 T cell priming following VACV infection. Rather, adoptive transfer experiments demonstrated that intrinsic MyD88-dependent pathways in CD8 T cells were critical. MyD88-deficient CD8 T cells failed to accumulate in wild-type hosts and poor expansion of MyD88-deficient VACV-specific CD8 T cells resulted after virus infection. In contrast, no defect was evident in the absence of TRIF, TLR2, TLR4, TLR9, and IL-1R. Together, our results highlight an important role for MyD88 in initial antiviral CD8 T cell responses and suggest that targeting this pathway may be useful in promoting and sustaining anti-VACV immunity.
Abstract Miltefosine (MIL) is currently the only oral drug available to treat visceral leishmaniasis but its use as first-line monotherapy has been compromised by an increasing treatment failure. Despite the scarce number of resistant clinical isolates, MIL-resistance by mutations in a single aminophospholipid transporter gene can easily be selected in a laboratory environment. These mutations result in a reduced survival in the mammalian host, which can partially be restored by exposure to MIL, suggesting a kind of drug-dependency. To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo survival, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of MIL-resistant (MIL-R) and syngeneic MIL-sensitive (MIL-S) Leishmania infantum . Results in C57Bl/6 and BALB/c mice show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-γ levels, finally resulting in a less efficient establishment in liver macrophages. The elevated IFN-γ levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites. In addition, we demonstrated that MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-γ production. These data provide an immunological basis for the MIL-R-associated attenuated phenotype and for the peculiar drug-dependency that may constitute one of the mechanisms of treatment failure. Importance Recently, our laboratory demonstrated an in vivo fitness loss of experimentally selected MIL-R parasites in both the sand fly vector and vertebrate host. These findings could explain the scarce number of MIL-R clinical isolates. Surprisingly, MIL-R parasites developed a MIL-dependency which could partially rescue their fitness loss and which may constitute a mechanism of treatment failure. This research aimed to better understand the immunological basis of the attenuated phenotype and the effect of MIL on infectivity traits. Together, this study provides new insights into the complex interplay between the parasite, drug and host and discloses an immune-related mechanism of treatment failure.
The salivary glands represent a major site of cytomegalovirus replication and transmission to other hosts. Despite control of viral infection by strong T cell responses in visceral organs cytomegalovirus replication continues in the salivary glands of mice, suggesting that the virus exploits the mucosal microenvironment. Here, we show that T cell immunity in the salivary glands is limited by the induction of CD4 T cells expressing the regulatory cytokine interleukin (IL)-10. Blockade of IL-10 receptor (IL-10R) with an antagonist antibody dramatically reduced viral load in the salivary glands, but not in the spleen. The mucosa-specific protection afforded by IL-10R blockade was associated with an increased accumulation of CD4 T cells expressing interferon γ, suggesting that IL-10R signaling limits effector T cell differentiation. Consistent with this, an agonist antibody targeting the tumor necrosis factor receptor superfamily member OX40 (TNFRSF4) enhanced effector T cell differentiation and increased the number of interferon γ–producing T cells, thus limiting virus replication in the salivary glands. Collectively, the results indicate that modulating effector T cell differentiation can counteract pathogen exploitation of the mucosa, thus limiting persistent virus replication and transmission.
Bovine African Trypanosomosis is an infectious parasitic disease affecting livestock productivity and thereby impairing the economic development of Sub-Saharan Africa. The most important trypanosome species implicated is T. congolense, causing anemia as most important pathological feature. Using murine models, it was shown that due to the parasite's efficient immune evasion mechanisms, including (i) antigenic variation of the variable surface glycoprotein (VSG) coat, (ii) induction of polyclonal B cell activation, (iii) loss of B cell memory and (iv) T cell mediated immunosuppression, disease prevention through vaccination has so far been impossible. In trypanotolerant models a strong, early pro-inflammatory immune response involving IFN-γ, TNF and NO, combined with a strong humoral anti-VSG response, ensures early parasitemia control. This potent protective inflammatory response is counterbalanced by the production of the anti-inflammatory cytokine IL-10, which in turn prevents early death of the host from uncontrolled hyper-inflammation-mediated immunopathologies. Though at this stage different hematopoietic cells, such as NK cells, T cells and B cells as well as myeloid cells (i.e. alternatively activated myeloid cells (M2) or Ly6c- monocytes), were found to produce IL-10, the contribution of non-hematopoietic cells as potential IL-10 source during experimental T. congolense infection has not been addressed. Here, we report for the first time that during the chronic stage of T. congolense infection non-hematopoietic cells constitute an important source of IL-10. Our data shows that hepatocyte-derived IL-10 is mandatory for host survival and is crucial for the control of trypanosomosis-induced inflammation and associated immunopathologies such as anemia, hepatosplenomegaly and excessive tissue injury.
Abstract Vaccinia Virus (VACV) elicits a robust CD8 T cell response that plays an important role in protection. To date, there is little information on the molecules that are essential to generate large pools of VACV-specific CD8 T cells. Here we show that the adaptor molecule myeloid differentiation primary-response gene 88 (MyD88) is critical for the magnitude of primary CD8 T cell responses to both dominant and subdominant VACV epitopes, with MyD88-/- mice exhibiting profoundly reduced CD8 T cell expansion and anti-viral cytokine production. Interestingly, the defect was not due to impaired antigen-presenting cell function. MyD88-/- DC matured normally and were able to promote strong CD8 T cell priming following VACV infection. Rather, adoptive transfer experiments demonstrated that MyD88-dependent pathways in CD8 T cells were critical. MyD88-deficient CD8 T cells were defective in surviving in wild-type hosts, and poor expansion of MyD88-deficient VACV-specific CD8 T cells resulted after virus infection. In contrast, no defect was evident in the absence of TRIF, TLR2, TLR9, and IL-1R. Together, our results highlight an important role for MyD88 in initial anti-viral CD8 T cell responses and suggest that targeting this pathway may be useful in promoting and sustaining anti-VACV immunity. This work was supported by NIH grants AI77079 to S.S.A and AI67341 to M.C.
Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.
Abstract Activation-induced cytidine deaminase (AID) has been implicated as both a positive and a negative factor in the progression of B cell chronic lymphocytic leukemia (CLL), but the role that it plays in the development and progression of this disease is still unclear. We generated an AID knockout CLL mouse model, AID −/− /Eμ-TCL1, and found that these mice die significantly earlier than their AID-proficient counterparts. AID-deficient CLL cells exhibit a higher ER stress response compared to Eμ-TCL1 controls, particularly through activation of the IRE1/XBP1s pathway. The increased production of secretory IgM in AID-deficient CLL cells contributes to their elevated expression levels of XBP1s, while secretory IgM-deficient CLL cells express less XBP1s. This increase in XBP1s in turn leads AID-deficient CLL cells to exhibit higher levels of B cell receptor signaling, supporting leukemic growth and survival. Further, AID −/− /Eμ-TCL1 CLL cells downregulate the tumor suppressive SMAD1/S1PR2 pathway and have altered homing to non-lymphoid organs. Notably, CLL cells from patients with IgHV-unmutated disease express higher levels of XBP1s mRNA compared to those from patients with IgHV-mutated CLL. Our studies thus reveal novel mechanisms by which the loss of AID leads to worsened CLL and may explain why unmutated CLL is more aggressive than mutated CLL.
ABSTRACT The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209 + MZ macrophages (MZMs) and the CD169 + marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.