Outcome-dependent sampling designs are common in many different scientific fields including epidemiology, ecology, and economics. As with all observational studies, such designs often suffer from unmeasured confounding, which generally precludes the nonparametric identification of causal effects. Nonparametric bounds can provide a way to narrow the range of possible values for a nonidentifiable causal effect without making additional untestable assumptions. The nonparametric bounds literature has almost exclusively focused on settings with random sampling, and the bounds have often been derived with a particular linear programming method. We derive novel bounds for the causal risk difference, often referred to as the average treatment effect, in six settings with outcome-dependent sampling and unmeasured confounding for a binary outcome and exposure. Our derivations of the bounds illustrate two approaches that may be applicable in other settings where the bounding problem cannot be directly stated as a system of linear constraints. We illustrate our derived bounds in a real data example involving the effect of vitamin D concentration on mortality.
In randomized trials, once the total effect of the intervention has been estimated, it is often of interest to explore mechanistic effects through mediators along the causal pathway between the randomized treatment and the outcome. In the setting with two sequential mediators, there are a variety of decompositions of the total risk difference into mediation effects. We derive sharp and valid bounds for a number of mediation effects in the setting of two sequential mediators both with unmeasured confounding with the outcome. We provide five such bounds in the main text corresponding to two different decompositions of the total effect, as well as the controlled direct effect, with an additional 30 novel bounds provided in the supplementary materials corresponding to the terms of 24 four-way decompositions. We also show that, although it may seem that one can produce sharp bounds by adding or subtracting the limits of the sharp bounds for terms in a decomposition, this almost always produces valid, but not sharp bounds that can even be completely noninformative. We investigate the properties of the bounds by simulating random probability distributions under our causal model and illustrate how they are interpreted in a real data example. Supplementary materials for this article are available online.
Abstract It is well-known that dichotomization can cause bias and loss of efficiency in estimation. One can easily construct examples where adjusting for a dichotomized confounder causes bias in causal estimation. There are additional examples in the literature where adjusting for a dichotomized confounder can be more biased than not adjusting at all. The message is clear, do not dichotomize. What is unclear is if there are scenarios where adjusting for the dichotomized confounder always leads to lower bias than not adjusting. We propose several sets of conditions that characterize scenarios where one should always adjust for the dichotomized confounder to reduce bias. We then highlight scenarios where the decision to adjust should be made more cautiously. To our knowledge, this is the first formal presentation of conditions that give information about when one should and potentially should not adjust for a dichotomized confounder.
There are now many options for doubly robust estimation; however, there is a concerning trend in the applied literature to believe that the combination of a propensity score and an adjusted outcome model automatically results in a doubly robust estimator and/or to misuse more complex established doubly robust estimators. A simple alternative, canonical link generalized linear models (GLM) fit via inverse probability of treatment (propensity score) weighted maximum likelihood estimation followed by standardization (the g-formula) for the average causal effect, is a doubly robust estimation method. Our aim is for the reader not just to be able to use this method, which we refer to as IPTW GLM, for doubly robust estimation, but to fully understand why it has the doubly robust property. For this reason, we define clearly, and in multiple ways, all concepts needed to understand the method and why it is doubly robust. In addition, we want to make very clear that the mere combination of propensity score weighting and an adjusted outcome model does not generally result in a doubly robust estimator. Finally, we hope to dispel the misconception that one can adjust for residual confounding remaining after propensity score weighting by adjusting in the outcome model for what remains `unbalanced' even when using doubly robust estimators. We provide R code for our simulations and real open-source data examples that can be followed step-by-step to use and hopefully understand the IPTW GLM method. We also compare to a much better-known but still simple doubly robust estimator.
Abstract Biological and epidemiological phenomena are often measured with error or imperfectly captured in data. When the true state of this imperfect measure is a confounder of an outcome exposure relationship of interest, it was previously widely believed that adjustment for the mismeasured observed variables provides a less biased estimate of the true average causal effect than not adjusting. However, this is not always the case and depends on both the nature of the measurement and confounding. We describe two sets of conditions under which adjusting for a non-deferentially mismeasured proxy comes closer to the unidentifiable true average causal effect than the unadjusted or crude estimate. The first set of conditions apply when the exposure is discrete or continuous and the confounder is ordinal, and the expectation of the outcome is monotonic in the confounder for both treatment levels contrasted. The second set of conditions apply when the exposure and the confounder are categorical (nominal). In all settings, the mismeasurement must be non-differential, as differential mismeasurement, particularly an unknown pattern, can cause unpredictable results.
Abstract Background: Antibiotic-induced dysbiosis is associated with an increased risk of depression and anxiety in the general population. A diagnosis of cancer is associated with an immediately and dramatically elevated risk of psychiatric disorders, but the potential influence of prediagnostic antibiotic-induced dysbiosis is unknown. Methods: Based on a national cohort of cancer patients in Sweden, we included 309,419 patients who were diagnosed with a first primary malignancy between July 2006 and December 2013. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) of first-onset psychosis, depression, anxiety, or stress-related disorders during the first year after cancer diagnosis for antibiotic use during the year before cancer diagnosis. Results: Compared with no antibiotic use, use of antibiotics was associated with a higher rate of the aforementioned psychiatric disorders (HR, 1.23; 95% CI, 1.16–1.30) after adjustment for sociodemographic factors, comorbidity, potential indications for antibiotics, and cancer stage and type. The magnitude of the association was higher for broad-spectrum antibiotics (HR, 1.27; 95% CI, 1.18–1.37), higher doses (HR, 1.32; 95% CI, 1.22–1.44), more frequent use (HR, 1.33; 95% CI, 1.21–1.46), and recent use (HR, 1.26; 95% CI, 1.17–1.35). Conclusions: Use of antibiotics, especially of broad-spectrum type, of high dose and frequency, with recent use, was associated with an aggravated risk of psychiatric disorders, compared with no antibiotic use. Impact: A better understanding of the microbiota–gut–brain axis may open up a wide avenue for the prevention and treatment of psychiatric disorders in cancer patients.