Old Web
English
Sign In
Acemap
>
authorDetail
>
Paxton Maeder-York
Paxton Maeder-York
Harvard University
Artificial intelligence
Machine learning
Deep learning
Embryo
Control engineering
3
Papers
61
Citations
0.00
KQI
Citation Trend
Filter By
Interval:
1900~2024
1900
2024
Author
Papers (2)
Sort By
Default
Most Recent
Most Early
Most Citation
No data
Journal
Conference
Others
A GENERALIZABLE MODEL FOR RANKING BLASTOCYST STAGE EMBRYOS USING DEEP LEARNING
2021
Fertility and Sterility
Kevin E. Loewke
Justina Hyunjii Cho
Paxton Maeder-York
Oleksii O. Barash
Marcos Meseguer
Nikica Zaninovic
Kathleen A. Miller
Denny Sakkas
Michael J. Levy
Matthew David VerMilyea
Show All
Source
Cite
Save
Citations (0)
IDENTIFYING POTENTIAL SOURCES OF BIAS IN DEEP LEARNING MODELS FOR EMBRYO ASSESSMENT
2021
Fertility and Sterility
Kevin E. Loewke
Justina Hyunjii Cho
Paxton Maeder-York
Oleksii O. Barash
Marcos Meseguer
Jonas Malmsten
Kathleen A. Miller
Denny Sakkas
Michael J. Levy
Matthew David VerMilyea
Show All
Source
Cite
Save
Citations (0)
1