logo
    Association of the expression of an SR-cyclophilin with myeloid cell differentiation
    7
    Citation
    20
    Reference
    10
    Related Paper
    Citation Trend
    Monocytes have been recently subdivided into three subsets: classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) subsets, but phenotypic and functional abnormalities of the three monocyte subsets in HIV-1 infection have not been fully characterized, especially in acute HIV-1 infection (AHI). In the study, we explored the dynamic changes of monocyte subsets and their surface markers, and the association between monocyte subsets and the IFN-γ, IL-4, IL-17 and TNF-α producing CD4+ T cells in acute and chronic HIV-1-infected patients. We found that, in the acute HIV-1-infected individuals, the frequency of the intermediate CD14++CD16+ monocyte subsets, the CD163 density and HLA-DR density on intermediate CD14++CD16+ monocytes, and plasma soluble form of CD163 (sCD163) were significantly higher than that in healthy controls. Intermediate CD14++CD16+ monocyte subsets and their HLA-DR expression levels were inversely correlated with the CD4+ T cell counts, and the intermediate CD14++CD16+ monocytes were positively correlated with plasma sCD163. In contrast to the non-classical CD14+CD16++ and classical CD14++CD16- monocyte subsets, the frequency of the intermediate CD14++CD16+ monocytes was positively associated with the frequency of IFN-γ and IL-4 producing CD4+ T cells in HIV-1-infected patients. Taken together, our observations provide new insight into the roles of the monocyte subsets in HIV pathogenesis, particularly during AHI, and our findings may be helpful for the treatment of HIV-related immune activation.
    CD16
    Monocyte
    CD163
    Pathogenesis
    Citations (47)
    Human monocytes include CD14++CD16- (classical), CD14++CD16+ (intermediate), and CD14+CD16++ (non-classical) subsets with divergent roles in immune regulation and inflammation. Since the functional characterization of monocyte subsets is most commonly performed using isolated monocytes, we investigated the influence of different monocyte isolation protocols on the relative abundance of monocyte subsets. Using flow cytometric subset characterization directly in whole blood as a reference, we found that monocyte isolation by enrichment of peripheral blood mononuclear cells and subsequent depletion of non-monocytes by magnetic labeling did not alter the distribution of monocyte subsets. Particularly, we failed to detect a loss of CD16+ subsets upon monocyte isolation, although one of the negative depletion protocols used contained an anti-CD16 antibody to label granulocytes. Overnight storage of isolated monocytes induced a significant repartition of monocyte subsets towards CD14++CD16+ intermediate monocytes, which was barely seen in stored whole blood. We identified intermediate monocytes as main binding partners of platelet-derived extracellular vesicles (EVs) and propose that residual platelets contained in isolated monocyte preparations release EVs that induce the expression of the IgG receptor FcγRIII (CD16) on monocytes.
    CD16
    Monocyte
    Fc receptor
    Citations (18)
    Abstract In this article, we present a flow cytometry assay by which human blood monocyte subpopulations—classical (CD14 ++ CD16 − ), intermediate (CD14 ++ CD16 + ), and nonclassical (CD14 + CD16 ++ ) monocytes—can be determined. Monocytic cells were selected from CD45 + leukocyte subsets by differential staining of the low‐density lipoprotein receptor‐related protein 1 (LRP1), which allows reducing the spill‐over of natural killer cells and granulocytes into the CD16 + monocyte gate. Percentages of monocyte subpopulations established by this procedure were significantly comparable with those obtained by a well‐standardized flow cytometry assay based on the HLA‐DR monocyte‐gating strategy. We also demonstrated that LRP1 is differentially expressed at cell surface of monocyte subpopulations, being significantly lower in nonclassical monocytes than in classical and intermediate monocytes. Cell surface expression of LRP1 accounts for only 20% of the total cellular content in each monocyte subpopulation. Finally, we established the within‐individual biological variation (bCV%) of circulating monocyte subpopulations in healthy donors, obtaining values of 21%, 20%, and 17% for nonclassical, intermediate, and classical monocytes, respectively. Similar values of bCV% for LRP1 measured in each monocyte subpopulation were also obtained, suggesting that its variability is mainly influenced by the intrinsic biological variation of circulating monocytes. Thus, we conclude that LRP1 can be used as a third pan‐monocytic marker together with CD14 and CD16 to properly identify monocyte subpopulations. The combined determination of monocyte subpopulations and LRP1 monocytic expression may be relevant for clinical studies of inflammatory processes, with special interest in atherosclerosis and cardiovascular disease. © 2014 International Society for Advancement of Cytometry
    CD16
    Monocyte
    Citations (22)
    Abstract Human monocytes are a heterogeneous cell population, which can be divided into a classical (CD14++CD16−), a non-classical (CD14+CD16+) and an intermediate (CD14++CD16+) subset. We hypothesized that low-grade inflammation may differentially affect monocyte subsets. We used a human lipopolysaccharide (LPS) infusion model to mimic low-grade inflammation to identify, which monocyte subsets are preferentially activated under these conditions. Monocyte subsets were identified by staining for CD14 and CD16, activation status of monocytes was analyzed by staining for CD11b and a novel in situ mRNA hybridization approach to detect IL-6 and IL-8 specific mRNA at the single-cell level by flow cytometry. After LPS challenge, cell numbers of monocyte subsets dropped after 2 h with cell numbers recovering after 6 h. Distribution of monocyte subsets was skewed dramatically towards the intermediate subset after 24 h. Furthermore, intermediate monocytes displayed the largest increase of CD11b expression after 2 h. Finally, IL-6 and IL-8 mRNA levels increased in intermediate and non-classical monocytes after 6 h whereas these mRNA levels in classical monocytes changed only marginally. In conclusion, our data indicates that the main responding subset of monocytes to standardized low-grade inflammation induced by LPS in humans is the CD14++CD16+ intermediate subset followed by the CD14+CD16+ non-classical monocyte subset. Circulating classical monocytes showed comparably less reaction to LPS challenge in vivo .
    CD16
    Monocyte
    Citations (77)
    To investigate the distribution of peripheral blood monocyte subsets of chronic hepatitis C (CHC) patients and observe the expression of negative regulators T cell immunoglobulin and mucin domain-3 (Tim-3) and programmed cell death-1 (PD-1) on the monocyte subsets.Flow cytometry was employed to determine the distribution of three monocyte subsets as well as Tim-3 and PD-1 expression on the three monocyte subsets. Their correlations with the clinical parameters were analyzed by Spearman test.Compared with healthy controls, an increased distribution of CD14(+)CD16(+) monocytes, especially CD14(++)CD16(+) monocyte subset, was observed in CHC patients. Tim-3 expression was significantly elevated on CD14(++)CD16(-) and CD14(+)CD16(++) subsets in CHC patients. Obviously increased PD-1 expression was found mainly on CD14(++)CD16(-) and CD14(++)CD16(+) subsets. There were no significant correlations between monocyte subsets, PD-1, Tim-3 and the clinical parameters.The levels Tim-3 and PD-1 are different in three monocyte subsets.
    CD16
    Monocyte
    Citations (0)
    Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14++CD16- classical monocytes, CD14+CD16++ non-classical monocytes and CD14++CD16+ intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14++CD16+ intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14++CD16- classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis.
    CD16
    Monocyte
    Citations (94)
    Background: Kawasaki disease (KD) is characterized by a disorder of immune response, and its etiology remains unknown. Monocyte is an important member of the body’s innate immune system; however its role in KD is still elusive due to its ambiguous heterogeneity and complex functions. We aim to comprehensively delineate monocyte heterogeneity in healthy and KD infants and to reveal the underlying mechanism for KD. Methods: Peripheral monocytes were enriched from peripheral blood samples of two healthy infants and two KD infants. scRNA-seq was performed to acquire the transcriptomic atlas of monocytes. Bio-information analysis was utilized to identify monocyte subsets and explore their functions and differentiation states. SELL+CD14+CD16- monocytes were validated using flow cytometry. Results: Three monocyte subsets were identified in healthy infants, including CD14+CD16- monocytes, CD14+CD16+ monocytes, and CD14 Low CD16+ monocytes. Cell trajectory analysis revealed that the three monocyte subsets represent a linear differentiation, and possess different biological functions. Furthermore, SELL+CD14+CD16- monocytes, which were poorly differentiated and relating to neutrophil activation, were found to be expanded in KD. Conclusion: Our findings provide a valuable resource for deciphering the monocyte heterogeneity in healthy infants and uncover the altered monocyte subsets in KD patients, suggesting potential biomarkers for KD diagnosis and treatment. Keywords: Kawasaki disease, monocyte subsets, scRNA-seq
    CD16
    Monocyte
    Citations (31)