logo
    We show that thermal conductivity of packed bed of alumina nanoparticles can be as low as 0.035W∕mK which is only 35% higher than the thermal conductivity of air and is smaller than the recently reported lowest thermal conductivity of solids using disordered layered WeS2. These findings show a promising approach for making low-cost and ultralow thermal conductivity thermal insulation materials with high density and good sustainability at high pressures.
    Citations (44)
    : Suspension and Arched Bridges contrasted. Advantages and Disadvantages of Suspension Bridges. Original Form of Suspension Bridges. Wire Cables and Plat-Link Chains compared. Forms of Wire Cables. Suspension Bridges with Auxiliary Cables. Examples of Principal Types of Large Suspension Bridges. Stiffened Suspension Bridges. Stiffened Suspension Chains. Provision for Movement of Chains, and against Wind. Remarks on Suspension Bridges.
    Suspension
    Citations (0)
    The object of this research is the process of the heat transfer through porous heat insulating materials. The problematic place of research is the absence of a generalized equation of thermal conductivity, which makes unable to predict the effective thermal conductivity of the material at the structure formation stage. The reason of it is lack of complex entrance independent factors of porous structure that influence on the effective thermal conductivity. For determining of this factors the computer simulation was used, it includes three dimensional samples and simulation of thermal process. After it, obtained computer modeling results were confirmed by laboratory experiment with using of the thermal conductivity meter ITP-MH4 of the company «SKB Stroyprybor».The regression equation of thermal conductivity for porous heat-insulating materials was found by the experimental design method, the analysis of it was showed that the most influence (80 %) on coefficient of effective thermal conductivity have the pore diameter along to the heat flow and the total impact of the pore diameter perpendicular to the heat flow with temperature gradient. The thermal conductivity of initial material without pores λmat in investigated range of 0,05 to 0,95 W/(m·K) isn't a significant factor. The temperature gradient doesn't linear and not directly proportional impact on the thermal conductivity of the final material.The generalized equation of thermal conductivity and the main factors, which influence on the coefficient of effective thermal conductivity, allow improving the thermal conductivity of new insulation materials and making it possible to develop a complete theory of thermophysical parameters control of porous heat insulating materials by changing the porous structure.
    Temperature Gradient
    Heat equation
    A numerical model for predicting the effective thermal conductivity of fused silica fiber/aerogel composites by simultaneously considering the effects of the fiber volume fraction and fiber diameter is presented. The predicted effective thermal conductivity of the fiber/aerogel composites agreed well with the existing measured and predicted results. The effects of the volume fraction (0−25%) and diameter (0.3−10 µm) of fibers on the effective thermal conductivity of aerogel composites were investigated under a large range of temperatures (300−1300 K). The results indicated that the minimum effective thermal conductivity of the fiber/aerogel composites by simultaneously considering the optimized fiber volume fraction and diameter was significantly lower than when individually considering the optimized fiber volume fraction and diameter values. For instance, the minimum effective thermal conductivity by simultaneous optimization was 0.0262 W/m−1 K−1 at 1000 K, which was much lower than 0.0327 W/m−1 K−1 by individually optimizing the fiber volume fraction at a diameter of 8 µm and 0.0532 W/m−1 K−1 by individually optimizing the fiber diameter at a volume fraction of 3%. Moreover, the quantitative relations between the minimum effective thermal conductivity of the fiber/aerogel composites and the temperatures are presented, with the aim of identifying the optimal thermal insulation for applications in aeronautics and astronautics, construction, and other industrial fields.
    Volume fraction