Risk factor analysis and nomogram development for predicting 28-day mortality in elderly ICU patients with sepsis and type 2 diabetes mellitus
0
Citation
48
Reference
10
Related Paper
Abstract:
Background: Type 2 diabetes mellitus (T2DM) significantly contributes to sepsis, with patients suffering from both conditions exhibiting greater severity and higher mortality rates compared to those with sepsis alone. Elderly individuals in the intensive care unit (ICU) are particularly prone to these comorbidities. A nomogram prediction model was developed to accurately assess prognosis and guide treatment for elderly patients with sepsis and T2DM. Methods: Data from 1489 patients with sepsis and T2DM in the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were analyzed and categorized into 28-days survival ( n = 1156) and 28-days death groups ( n = 333). The dataset’s clinical characteristics were employed to create a nomogram predicting 28-days mortality in elderly ICU patients with sepsis and T2DM. The least absolute shrinkage and selection operator (LASSO) regression identified candidate predictors, followed by a multivariate logistic regression analysis incorporating variables with p < .05 into the final model. A nomogram was then constructed using these significant risk predictors. The model’s discriminatory power was evaluated through a receiver operating curve (ROC) and the area under the curve (AUC). Additionally, model performance was assessed using a calibration plot and the Hosmer-Lemeshow goodness-of-fit test (HL test), and clinical utility was examined via decision curve analysis (DCA). Results: Risk factors incorporated into the nomogram included age, ICU length of stay, mean blood pressure (MBP), metastatic solid tumor, Sequential Organ Failure Assessment (SOFA) score, Logistic Organ Dysfunction System (LODS) score, blood urea nitrogen (BUN), and vasopressor use. The predictive model demonstrated robust discrimination, with an AUC of 0.802 (95% CI 0.768–0.835) in the training dataset and 0.753 (95% CI 0.697–0.809) in the validation set. Calibration was confirmed with the HL test ( p > .05), and DCA indicated clinical usefulness. Conclusion: This new nomogram serves as a practical tool for predicting 28-days mortality among elderly ICU patients with sepsis and T2DM. Optimizing treatment strategies based on this model could enhance 28-days survival rates for these patients.Keywords:
Nomogram
Nomogram
Cite
Citations (235)
Nomogram
Cite
Citations (102)
Prediction is central to the management of prostate cancer. Nomograms are devices that make predictions. We organized many nomograms for prostate cancer.Using MEDLINE a literature search was performed on prostate cancer nomograms from January 1966 to February 2000. We recorded input variables, prediction form, the number of patients used to develop the nomogram and the outcome being predicted. We also recorded the accuracy measures reported by the original authors and whether the nomograms have withstood validation. In addition, we noted whether the nomograms were proprietary or in the public domain. Each nomogram was classified into patient clinical disease state and the outcome being predicted.The literature search generated 42 published nomograms that may be applied to patients in various clinical stages of disease. Of the 42 nomograms only 18 had undergone validation, of which 2 partially failed. Few nomograms have been compared for predictive superiority and none appears to have been compared with clinical judgment alone.Patients with prostate cancer need accurate predictions. Prognostic nomograms are available for many clinical states and outcomes, and may provide the most accurate predictions currently available. Selection among them and progress in this field are hampered by the lack of comparisons for predictive accuracy.
Nomogram
Cite
Citations (202)
Nomogram
Biochemical recurrence
Cite
Citations (80)
Abstract This 1:5 case‐control study aimed to identify the risk factors of hospital‐acquired pressure injuries (HAPIs) and to develop a mathematical model of nomogram for the risk prediction of HAPIs. Data for 370 patients with HAPIs and 1971 patients without HAPIs were extracted from the adverse events and the electronic medical systems. They were randomly divided into two sets: training (n = 1951) and validation (n = 390). Significant risk factors were identified by univariate and multivariate analyses in the training set, followed by a nomogram constructed. Age, independent movement, sensory perception and response, moisture, perfusion, use of medical devices, compulsive position, hypoalbuminaemia, an existing pressure injury or scarring from a previous pressure injury, and surgery sufferings were considered significant risk factors and were included to construct a nomogram. In both of the training and validation sets, the areas of 0.90 under the receiver operating characteristic curves showed excellent discrimination of the nomogram; calibration plots demonstrated a good consistency between the observed probability and the nomogram's prediction; decision curve analyses exhibited preferable net benefit along with the threshold probability in the nomogram. The excellent performance of the nomogram makes it a convenient and reliable tool for the risk prediction of HAPIs.
Nomogram
Univariate
Pressure injury
Cite
Citations (13)
Nomogram
Cite
Citations (9)
Objective: To compare the diagnostic accuracy of various transcutaneous bilirubin (TcB) nomograms for predischarge screening. Methods: The paired total serum bilirubin (TSB) and TcB measurements collected in neonates ≥35 weeks and ≥2000 g birth weight were analyzed. BiliCare™ bilirubinometer was used for TcB measurement. We chose the following nomograms for the study: Bhutani nomogram, Maisel's nomogram, Agarwal nomogram, Thakkar nomogram, American Academy of Pediatrics (AAP) nomogram within 3 mg/dl of phototherapy cutoff, AAP nomogram >70% of phototherapy cutoff and if TcB value is above 13 mg/dl. The diagnostic accuracy of these nomograms for TcB was compared with TSB plotted in the Bhutani nomogram. Results: TcB showed a positive correlation with TSB (Pearson correlation coefficient = 0.783). Bhutani nomogram, Maisel's nomogram and AAP (using within 3 mg/dL cutoff) nomogram showed good sensitivity and low false-negative rate while avoiding blood draws in most neonates. Conclusion: Bhutani nomogram, Maisel's nomogram, and AAP (using within 3 mg/dL of phototherapy cutoff) nomograms have comparable diagnostic accuracy for predischarge bilirubin screening in neonates.
Nomogram
Cut-off
Cite
Citations (0)
Nomogram
Predictive modelling
Cite
Citations (96)
Nomogram
Cite
Citations (12)
Abstract Background: The aim of the study was to establish and validate nomograms to predict the mortality risk of patients with COVID-19 using routine clinical indicators. Method: This retrospective study included a development cohort enrolled 2119 hospitalized COVID-19 patients and a validation cohort included 1504 COVID-19 patients. The demographics, clinical manifestations, vital signs and laboratory test results of the patients at admission and outcome of in-hospital death were recorded. The independent factors associated with death were identified by a forward stepwise multivariate logistic regression analysis and used to construct two prognostic nomograms. The models were then tested in an external dataset. Results: Nomogram 1 is a full model included nine factors identified in the multivariate logistic regression and nomogram 2 is built by selecting four factors from nine to perform as a reduced model. Nomogram 1 and nomogram 2 established showed better performance in discrimination and calibration than the MuLBSTA score in training. In validation, Nomogram 1 performed better than nomogram 2 for calibration. Conclusion: Nomograms we established performed better than the MuLBSTA score. We recommend the application of nomogram 1 in general hospital which provide robust prognostic performance but more cumbersome; nomogram 2 in mobile cabin hospitals which depend on less laboratory examinations and more convenient. Both nomograms can help clinicians in identifying patients at risk of death with routine clinical indicators at admission, which may reduce the overall mortality of COVID-19.
Nomogram
Cite
Citations (1)