Distinct Mechanisms for Activation of the Opioid Receptor-Like 1 and κ-Opioid Receptors by Nociceptin and Dynorphin A
Catherine MollereauLionel MoulédousSophie LapaluGilles CamboisChristiane MoisandJean‐Luc ButourJean-Claude Meunier
0
Citation
39
Reference
10
Related Paper
Keywords:
Nociceptin receptor
Dynorphin
Dynorphin A
Proenkephalin
Dynorphin
Endogenous opioid
Dynorphin A
Proopiomelanocortin
Cite
Citations (19)
Molecular mechanisms of adaptive transformations caused by alcohol exposure on opioid dynorphin and nociceptin systems have been investigated in the rat brain. Alcohol was intragastrically administered to rats to resemble human drinking with several hours of exposure: water or alcohol (20% in water) at a dose of 1.5 g/kg three times daily for 1 or 5 days. The development of tolerance and dependence were recorded daily. Brains were dissected 30 minutes (1- and 5-day groups) or 1, 3 or 7 days after the last administration for the three other 5-day groups (groups under withdrawal). Specific alterations in opioid genes expression were ascertained. In the amygdala, an up-regulation of prodynorphin and pronociceptin was observed in the 1-day group; moreover, pronociceptin and the kappa opioid receptor mRNAs in the 5-day group and both peptide precursors in the 1-day withdrawal group were also up-regulated. In the prefrontal cortex, an increase in prodynorhin expression in the 1-day group was detected. These data indicate a relevant role of the dynorphinergic system in the negative hedonic states associated with multiple alcohol exposure. The pattern of alterations observed for the nociceptin system appears to be consistent with its role of functional antagonism towards the actions of ethanol associated with other opioid peptides. Our findings could help to the understanding of how alcohol differentially affects the opioid systems in the brain and also suggest the dynorphin and nociceptin systems as possible targets for the treatment and/or prevention of alcohol dependence.
Nociceptin receptor
Dynorphin
κ-opioid receptor
Dynorphin A
Self-administration
Cite
Citations (69)
Nociceptin receptor
Dynorphin
Dynorphin A
Cite
Citations (24)
Nociceptin receptor
Dynorphin
NOP
Dynorphin A
Cite
Citations (11)
Dynorphin
Dynorphin A
Cite
Citations (7)
Dynorphin
Dynorphin A
Proopiomelanocortin
Endorphins
beta-Endorphin
Alpha (finance)
Cite
Citations (1)
Nociceptin receptor
Dynorphin
Dynorphin A
Cite
Citations (0)
Dynorphin
Dynorphin A
Pentapeptide repeat
Endorphins
Endogenous opioid
Cite
Citations (1)
Dynorphin
Dynorphin A
Pentapeptide repeat
Endorphins
Endogenous opioid
Cite
Citations (0)
Central non-opioid physiological and pathophysiological effects of dynorphin A and related peptides.
Dynorphin A (Dyn A) and related opioid peptides derived from prodynorphin possess a high affinity for kappa opioid receptors, but they also bind to other opioid receptors (mu and delta) as well as to some non-opioid receptor sites. Although the physiological role of these peptides is not well established, recent experimental data pinpoint their particular involvement in physiological and pathophysiological conditions that relate to algesia, spinal cord injury and epilepsy. In this paper, we review data which support the concept that the non-opioid behavioral effects of Dyn A and related endogenous peptides which are observed under these conditions are physiologically and pathophysiologically relevant.
Dynorphin
Dynorphin A
κ-opioid receptor
Pathophysiology
Endogenous opioid
δ-opioid receptor
Cite
Citations (19)