logo
    Abstract In the past, high- z active galactic nuclei (AGNs) were given a minor role as possible drivers of reionization, despite initial evidence in favor of their large space densities at low luminosities by Chandra and the Hubble Space Telescope. Recent observations from JWST are finding relatively large numbers of faint AGNs at z > 4, convincingly confirming these early results. We present a sample of z ∼ 5 AGNs, both from wide, shallow ground-based surveys and from deep, pencil-beam observations from JWST, allowing us to estimate their space densities with unprecedented accuracy. The bright end ( M 1450 < −26) of the z ∼ 5 AGN luminosity function is well constrained, with a rather steep slope. The faint end ( M 1450 ≥ −22) indicates a high space density, the scatter is significant, and the knee ( M 1450 ∼ −24) is mostly undetermined. Comparisons with state-of-the-art models find reasonable agreement with the observed AGN luminosity function at z = 5, while the predicted space density evolution at higher redshifts appears to be too fast with respect to observational constraints. Given the large variance at the faint end, we consider different options in fitting the luminosity functions and deriving the ionizing emissivity. Even in the most conservative scenario, the photoionization rate produced by z ∼ 5 AGNs is consistent with the ultraviolet background measurements. A slow evolution of the space density of faint AGNs is observed, indicating that active SMBHs are probably producing large amounts of ionizing photons at z > 6, well into the Epoch of Reionization. This is an important indication that high- z AGNs could be major contributors to the reionization of the Universe.
    Citations (2)
    Aims. Ly-alpha emitters (LAEs) can be detected out to very high redshifts during the epoch of reionization. The evolution of the LAE luminosity function with redshift is a direct probe of the Ly-alpha transmission of the intergalactic medium (IGM), and therefore of the IGM neutral-hydrogen fraction. Measuring the Ly-alpha luminosity function (LF) of LAEs at redshift z = 7.7 therefore allows us to constrain the ionizing state of the Universe at this redshift. Methods. We observed three 7.5'x7.5' fields with the HAWK-I instrument at the VLT with a narrow band filter centred at 1.06 $\mu$m and targeting LAEs at redshift z ~ 7.7. The fields were chosen for the availability of multiwavelength data. One field is a galaxy cluster, the Bullet Cluster, which allowed us to use gravitational amplification to probe luminosities that are fainter than in the field. The two other fields are subareas of the GOODS Chandra Deep Field South and CFHTLS-D4 deep field. We selected z=7.7 LAE candidates from a variety of colour criteria, in particular from the absence of detection in the optical bands. Results. We do not find any LAE candidates at z = 7.7 in ~2.4 x 10^4 Mpc^3 down to a narrow band AB magnitude of ~ 26, which allows us to infer robust constraints on the Ly-alpha LAE luminosity function at this redshift. Conclusions. The predicted mean number of objects at z = 6.5, derived from somewhat different LFs of Hu et al. (2010), Ouchi et al. (2010), and Kashikawa et al. (2011) are 2.5, 13.7, and 11.6, respectively. Depending on which of these LFs we refer to, we exclude a scenario with no evolution from z = 6.5 to z = 7.7 at 85% confidence without requiring a strong change in the IGM Ly-alpha transmission, or at 99% confidence with a significant quenching of the IGM Ly-alpha transmission, possibly from a strong increase in the high neutral-hydrogen fraction between these two redshifts.
    Dark Ages
    Epoch (astronomy)
    Citations (43)
    Primordial magnetic fields generated in the early universe are subject of considerable investigation, and observational limits on their strength are required to constrain the theory. Due to their impact on the reionization process, the strength of primordial fields can be limited using the latest data on reionization and the observed UV-luminosity function of high-redshift galaxies. Given the steep faint-end slope of the luminosity function, faint galaxies contribute substantial ionizing photons, and the low-luminosity cutoff has an impact on the total budget thereof. Magnetic pressure from primordial fields affects such cutoff by preventing collapse in halos with mass below 10^{10} M_solar (B_0 / 3 nG)^3, with B_0 the co-moving field strength. In this letter, the implications of these effects are consistently incorporated in a simplified model for reionization, and the uncertainties due to the cosmological parameters, the reionization parameters and the observed UV luminosity function are addressed. We show that the observed ionization degree at z\sim7 leads to the strongest upper limit of B_0\lsim 2-3nG. Stronger limits could follow from measurements of high ionization degree at z>7.
    Cut-off
    Dark Ages
    We present the results of a numerical study examining the effect of an H2-based star formation (SF) model on the rest-frame UV luminosity function and star formation rate function (SFRF) of z ⩾ 6 galaxies, and the implications for reionization. Using cosmological hydrodynamical simulations outfitted with an H2-SF model, we find good agreement with our previous results (non-H2 SF model) and observations at Muv ⩽ −18. However, at Muv > −18, we find that the LF deviates from both our previous work and current observational extrapolations, producing significantly fewer low-luminosity galaxies and exhibiting additional turnover at the faint end. We constrain the redshift evolution of this turnover point using a modified Schechter function that includes additional terms to quantify the turnover magnitude () and subsequent slope (β). We find that evolves from (at z = 8) to −15.38 (z = 6), while β becomes shallower by Δβ = 0.22 during the same epoch. This occurs in an Muv range that will be observable by James Webb Space Telescope. By integrating the SFRF, we determine that even though the H2-SF model significantly reduces the number density of low-luminosity galaxies at Muv > −18, it does not suppress the total SFR density enough to affect the capability of SF to maintain reionization.
    Citations (53)
    When the first galaxies formed and starlight escaped into the intergalactic medium to reionize it, galaxy formation and reionization were both highly inhomogeneous in time and space, and fully-coupled by mutual feedback. To show how this imprinted the UV luminosity function (UVLF) of reionization-era galaxies, we use our large-scale, radiation-hydrodynamics simulation CoDa II to derive the time- and space-varying halo mass function and UVLF, from $z\simeq6$-15. That UVLF correlates strongly with local reionization redshift: earlier-reionizing regions have UVLFs that are higher, more extended to brighter magnitudes, and flatter at the faint end than later-reionizing regions observed at the same $z$. In general, as a region reionizes, the faint-end slope of its local UVLF flattens, and, by $z=6$ (when reionization ended), the global UVLF, too, exhibits a flattened faint-end slope, `rolling-over' at $M_\text{UV}\gtrsim-17$. CoDa II's UVLF is broadly consistent with cluster-lensed galaxy observations of the Hubble Frontier Fields at $z=6$-8, including the faint end, except for the faintest data point at $z=6$, based on one galaxy at $M_\text{UV}=-12.5$. According to CoDa II, the probability of observing the latter is $\sim5\%$. However, the effective volume searched at this magnitude is very small, and is thus subject to significant cosmic variance. We find that previous methods adopted to calculate the uncertainty due to cosmic variance underestimated it on such small scales by a factor of 2-4, primarily by underestimating the variance in halo abundance when the sample volume is small.
    Cosmic variance
    Citations (0)
    ABSTRACT Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions at . A commonly used Schechter function approximation with the magnitude cut at provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut is found to vary between −12 and −14 with a mild redshift dependence. An analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.
    Citations (52)
    We present the largest-ever sample of 79 Ly$α$ emitters (LAEs) at $z\sim$ 7.0 selected in the COSMOS and CDFS fields of the LAGER project (the Lyman Alpha Galaxies in the Epoch of Reionization). Our newly amassed ultradeep narrowband exposure and deeper/wider broadband images have more than doubled the number of LAEs in COSMOS, and we have selected 30 LAEs in the second field CDFS. We detect two large-scale LAE-overdense regions in the COSMOS that are likely protoclusters at the highest redshift to date. We perform injection and recovery simulations to derive the sample incompleteness. We show significant incompleteness comes from blending with foreground sources, which however has not been corrected in LAE luminosity functions in {the} literature. The bright end bump in the Ly$α$ luminosity function in COSMOS is confirmed with 6 (2 newly selected) luminous LAEs (L$_{Lyα}$ $>$ 10$^{43.3}$ erg s$^{-1}$). Interestingly, the bump is absent in CDFS, in which only one luminous LAE is detected. Meanwhile, the faint end luminosity functions from the two fields well agree with each other. The 6 luminous LAEs in COSMOS coincide with 2 LAE-overdense regions, while such regions are not seen in CDFS. The bright-end luminosity function bump could be attributed to ionized bubbles in a patchy reionization. It appears associated with cosmic overdensities, thus supports an inside-out reionization topology at $z$ $\sim$ 7.0, i.e., the high density peaks were ionized earlier compared to the voids. An average neutral hydrogen fraction of $x_{HI}$ $\sim$ 0.2 -- 0.4 is derived at $z\sim$ 7.0 based on the cosmic evolution of the Ly$α$ luminosity function.
    Cosmos (plant)
    Dark Ages
    Cosmic variance
    Citations (53)
    When the first galaxies formed and starlight escaped into the intergalactic medium to reionize it, galaxy formation and reionization were both highly inhomogeneous in time and space, and fully-coupled by mutual feedback. To show how this imprinted the UV luminosity function (UVLF) of reionization-era galaxies, we use our large-scale, radiation-hydrodynamics simulation CoDa II to derive the time- and space-varying halo mass function and UVLF, from $z\simeq6$-15. That UVLF correlates strongly with local reionization redshift: earlier-reionizing regions have UVLFs that are higher, more extended to brighter magnitudes, and flatter at the faint end than later-reionizing regions observed at the same $z$. In general, as a region reionizes, the faint-end slope of its local UVLF flattens, and, by $z=6$ (when reionization ended), the global UVLF, too, exhibits a flattened faint-end slope, `rolling-over' at $M_\text{UV}\gtrsim-17$. CoDa II's UVLF is broadly consistent with cluster-lensed galaxy observations of the Hubble Frontier Fields at $z=6$-8, including the faint end, except for the faintest data point at $z=6$, based on one galaxy at $M_\text{UV}=-12.5$. According to CoDa II, the probability of observing the latter is $\sim5\%$. However, the effective volume searched at this magnitude is very small, and is thus subject to significant cosmic variance. We find that previous methods adopted to calculate the uncertainty due to cosmic variance underestimated it on such small scales by a factor of 2-4, primarily by underestimating the variance in halo abundance when the sample volume is small.
    Cosmic variance
    Citations (2)
    Limiting the number of model-dependent assumptions to a minimum, we discuss the detectability of the sources responsible for reionization with existing and planned telescopes. We conclude that if reionization sources are UV-efficient, minimum luminosity sources, then it may be difficult to detect them before the advent of the James Webb Space Telescope (JWST). The best approach before the launch of JWST may be either to exploit gravitational lensing by clusters of galaxies, or to search for strong Ly-alpha sources by means of narrow-band excess techniques or slitless grism spectroscopy.
    Grism
    Dark Ages
    Spitzer Space Telescope