logo
    Whole-Genome sequencing of Calonectria dianii: An important pathogen causing Eucalyptus leaf blight
    0
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    Eucalyptus leaf blight, caused by Calonectria spp., significantly impacts the global Eucalyptus industry. Calonectria dianii, as one of the predominant causal agents, poses a serious threat to Eucalyptus plantations in China. To enhance our understanding of its pathogenic mechanisms, we sequenced the genome of C. dianii RIFT 6520 using both Nanopore PromethION and Illumina NovaSeq PE150 platforms. Our analysis revealed a 61.76 Mb genome comprising 30 contigs with an N50 of 4,726,631 bp, a GC content of 49.74 %, and 10,184 predicted coding genes. Additionally, comparative genomic analysis between C. dianii and seven other significant plant-pathogenic Calonectria species was conducted. This analysis provided insights into the evolutionary relationships and adaptive mechanisms of these pathogens. Our study elucidates the genetic basis of C. dianii's pathogenicity and evolution, providing valuable information for future research on its molecular interactions with Eucalyptus and aiding in the development of precise control measures for Eucalyptus leaf blight.
    Keywords:
    Fungal pathogen
    In this paper, the strategic purpose and significance of introducing Eucalyptus grandis into Hunan province were elaborated from many aspects such as climate, forest resources and the characteristic of species structure etc. After ten year experiments on the introduction of Eucalyptus , species and provenance of Eucalyptus , and families of Eucalyptus in Hunan, the purpose of Eucalyptus grandis' breeding became more clear and definite. Therefore, the strategies for breeding Eucalyptus grandis were put forward and an optimal proposal was raised for carrying out the studies on breeding of Eucalyptus grandis in Hunan.
    Citations (0)
    The leaf blight of walnut in Hotan of Xinjiang was investigated and the specimens were collected in October 2010.The pathogen was isolated from the diseased tissue,through purification,identification,and the check according to Koch's postulates,the pathogen caused the leaf blight of walnut was obtained.Based on the morphological characteristics and the molecular identification of rDNA-ITS,the pathogen was identified as Alternaria alternata.
    Fungal pathogen
    Identification
    Citations (0)
    Late blight of tomato and potato caused by Phytophthora infestans is a recurring and costly problem for growers in the USA. The history of late blight in the USA, current status of late blight in the USA, grower attitudes towards late blight, management, current research, and future perspectives of late blight are discussed.
    Phytophthora infestans
    Taking different kinds of eucalyptus with different ages as studying objective,we determined water content of different above-ground organs and above-ground biomass of seven main eucalyptus and Pinus massoniana Lamb.The results show that single above-ground biomasses of Eucalyptus grandis × E.urophylla No.5 and Eucalyptus exserta F.V.Mull.are obviously higher than the others' and higher than that of the contrast,Pinus massoniana Lamb.
    Pinus massoniana
    Citations (0)
    Abstract. Tomato late blight is an infamous disease due to causing severe tomato yield loss. Phytophthora infestans, the causal pathogen of tomato late blight, could disseminate to all the cultivation regions in a suitable weather condition and destroy all the crop in weeks. In order to prevent severe disease spreading, early symptom identification of the disease is important to take actions for disease control. Late blight symptoms include from irregularly shaped water-soaked to brown necrotic lesions on plant leaves and stems. Conventionally, the identification of late blight deeply relies on the experience of tomato farmers. However, the symptoms of late blight might be confused with the atypical symptoms and lesions of some other diseases, confusing not only the well-experienced farmers but also the inexperienced plant pathologists. This study proposed to identify tomato late blight using leaf images and deep learning. A Navigator-teacher-scrutinizer network (NTS-Net) was developed to localize and identify the putative late blight lesions of tomato leaves. The developed NTS-Net model achieved a mean accuracy of 99.76% in diseased and healthy plant identification and also achieved a precision of 50% in lesions localization.
    Phytophthora infestans
    Identification
    Plant disease
    Citations (0)
    ABSTRACT Rhodotorula mucilaginosa , a yeast with valuable biotechnological features, has also been recorded as an emergent opportunistic pathogen that might cause disease in both immunocompetent and immunocompromised individuals. Here, we report the draft genome sequence of R. mucilaginosa strain C2.5t1, which was isolated from cacao seeds in Cameroon.
    Opportunistic pathogen
    Fungal pathogen
    Strain (injury)
    Sequence (biology)
    Citations (31)
    The results are presented of a trial of 28 potato varieties, including 19 blight-resistant Sarpo varieties, at Llanrhystud in Ceredigion. The effects of compost tea preparations in protecting against blight were also studied.
    Phytophthora infestans
    Field trial
    Citations (0)
    Бұл зерттеужұмысындaКaно моделітурaлы жәнеоғaн қaтыстытолықмәліметберілгенжәнеуниверситетстуденттерінебaғыттaлғaн қолдaнбaлы (кейстік)зерттеужүргізілген.АхметЯссaуи университетініңстуденттеріүшін Кaно моделіқолдaнылғaн, олaрдың жоғaры білімберусaпaсынa қоятынмaңыздытaлaптaры, яғнисaпaлық қaжеттіліктері,олaрдың мaңыздылығытурaлы жәнесaпaлық қaжеттіліктерінеқaтыстыөз университетінқaлaй бaғaлaйтындығытурaлы сұрaқтaр қойылғaн. Осы зерттеудіңмaқсaты АхметЯсaуи университетіндетуризмменеджментіжәнеқaржы бaкaлaвриaт бaғдaрлaмaлaрыныңсaпaсынa қaтыстыстуденттердіңқaжеттіліктерінaнықтaу, студенттердіңқaнaғaттaну, қaнaғaттaнбaу дәрежелерінбелгілеу,білімберусaпaсын aнықтaу мен жетілдіружолдaрын тaлдaу болыптaбылaды. Осы мaқсaтқaжетуүшін, ең aлдыменКaно сaуaлнaмaсы түзіліп,116 студенткеқолдaнылдыжәнебілімберугежәнеоның сaпaсынa қaтыстыстуденттердіңтaлaптaры мен қaжеттіліктерітоптықжұмыстaрaрқылыaнықтaлды. Екіншіден,бұл aнықтaлғaн тaлaптaр мен қaжеттіліктерКaно бaғaлaу кестесіменжіктелді.Осылaйшa, сaпa тaлaптaры төрт сaнaтқa бөлінді:болуытиіс, бір өлшемді,тaртымдыжәнебейтaрaп.Соңындa,қaнaғaттaну мен қaнaғaттaнбaудың мәндеріесептелдіжәнестуденттердіңқaнaғaттaну мен қaнaғaттaнбaу деңгейлерінжоғaрылaту мен төмендетудеосытaлaптaр мен қaжеттіліктердіңрөліaйқын aнықтaлды.Түйінсөздер:сaпa, сaпaлық қaжеттіліктер,білімберусaпaсы, Кaно моделі.
    Citations (0)