logo
    Salmonella enterica virulence databases and bioinformatic analysis tools development
    2
    Citation
    42
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Salmonella enterica , a prominent foodborne pathogen, contributes significantly to global foodborne illnesses annually. This species exhibits significant genetic diversity, potentially impacting its infectivity, disease severity, and antimicrobial resistance. Whole genome sequencing (WGS) offers comprehensive genetic insights that can be utilized for virulence assessment. However, existing bioinformatic tools for studying Salmonella virulence have notable limitations. To address this gap, a Salmonella Virulence Database with a non-redundant, comprehensive list of putative virulence factors was constructed. Two bioinformatic analysis tools, Virulence Factor Profile Assessment and Virulence Factor Profile Comparison tools, were developed. The former provides data on similarity to the reference genes, e-value, and bite score, while the latter assesses the presence/absence of virulence genes in Salmonella isolates and facilitates comparison of virulence profiles across multiple sequences. To validate the database and associated bioinformatic tools, WGS data from 43,853 Salmonella isolates spanning 14 serovars was extracted from GenBank, and WGS data previously generated in our lab was used. Overall, the Salmonella Virulence database and our bioinformatic tools effectively facilitated virulence assessment, enhancing our understanding of virulence profiles among Salmonella isolates and serovars. The public availability of these resources will empower researchers to assess Salmonella virulence comprehensively, which could inform strategies for pathogen control and risk evaluations associated with human illnesses.
    Keywords:
    Salmonella enterica
    Virulence factor
    ABSTRACT Classical biotyping characterizes strains by creating biotype profiles that consider only positive and negative results for a predefined set of biochemical tests. This method allows Salmonella subspecies to be distinguished but does not allow serotypes and phage types to be distinguished. The objective of this study was to determine the relatedness of isolates belonging to distinct Salmonella enterica subsp. enterica serotypes by using a refined biotyping process that considers the kinetics at which biochemical reactions take place. Using a Vitek GNI+ card for the identification of gram-negative organisms, we determined the biochemical kinetic reactions (28 biochemical tests) of 135 Salmonella enterica subsp. enterica strains of pig origin collected in Spain from 1997 to 2002 (59 Salmonella serotype Typhimurium strains, 25 Salmonella serotype Typhimurium monophasic variant strains, 25 Salmonella serotype Anatum strains, 12 Salmonella serotype Tilburg strains, 7 Salmonella serotype Virchow strains, 6 Salmonella serotype Choleraesuis strains, and 1 Salmonella enterica serotype 4,5,12:−:− strain). The results were expressed as the colorimetric and turbidimetric changes (in percent) and were used to enhance the classical biotype profile by adding kinetic categories. A hierarchical cluster analysis was performed by using the enhanced profiles and resulted in 14 clusters. Six major clusters grouped 94% of all isolates with a similarity of ≥95% within any given cluster, and eight clusters contained a single isolate. The six major clusters grouped not only serotypes of the same type but also phenotypic serotype variations into individual clusters. This suggests that metabolic kinetic reaction data from the biochemical tests commonly used for classic Salmonella enterica subsp. enterica biotyping can possibly be used to determine the relatedness between isolates in an easy and timely manner.
    Salmonella enterica
    Strain (injury)
    Subspecies
    Salmonella spp. represent one of the most common causes of bacterial foodborne illnesses around the world. The species Salmonella enterica contains more than 2500 serotypes, and emergence of new human pathogenic Salmonella strains and serotypes represents a major public health issue. Salmonella enterica subsp. enterica serotype 4,5,12:i:- represents a monophasic variant of Salmonella Typhimurium, which has rarely been identified before the mid-1990 s. The prevalence of this serotype among human salmonellosis cases has increased considerably since the mid-1990 s and Salmonella 4,5,12:i:- currently (i.e., the first decade of the 2000s) represents one of the most common serotypes among human cases in many countries around the world. This paper discusses our current knowledge of the global ecology, epidemiology, transmission, and evolution of this emerging Salmonella serotype.
    Salmonella enterica
    Citations (225)
    Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica , it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella . Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels.
    Salmonella enterica
    Preharvest
    Citations (384)
    The spread of Salmonella enterica serotype Typhimurium definitive phage type DT104 in sub-Saharan Africa is a public health concern. We obtained two isolates of S. typhimurium DT104 from blood cultures of infants with malaria in Mozambique. Both isolates contained Salmonella genomic island 1A and had the same pulsed-field gel electrophoresis PulseNet pattern (STYMXB.0005). Results showed the need for continuous surveillance of Salmonella spp. serotypes circulating in this area.
    Salmonella enterica
    Phage typing
    Citations (9)
    Molecular typing of salmonella strains isolated between 1997 and 1999 in southern Italy and carried out by the Southern Italy Centre for Enteric Pathogens, has shown a high frequency of Salmonella enterica serotype Cerro. This serotype is extremely rare i
    Salmonella enterica
    Citations (11)
    Retrospective laboratory-based surveillance was conducted on Salmonella serotypes isolated from various animal species from 2007 to 2014 at the Agricultural Research Council, Onderstepoort Veterinary Research Institute, South Africa. During the surveillance period, 1229 salmonellae isolations were recorded. Around 108 different serotypes were recovered from nine different food and non-food animal host species. The three most common serotypes were Salmonella entericasubspecies enterica serotype Heidelberg (n = 200), Salmonella enterica subspecies enterica serotype Enteritidis (n = 170) and Salmonella enterica subspecies enterica serotype Typhimurium (n = 146). These were followed by Salmonella enterica subspecies enterica serotype Anatum (n = 62) and Salmonella entericasubspecies enterica serotype Infantis (n = 57). Salmonella enterica subspecies enterica serotype Schwarzengrund and Salmonella enterica subspecies entericaserotype Muenchen were recovered in 50 and 48 cases, respectively. Of the total number of isolations recorded during the period under review, 871 (70.8%) occurred in poultry and other birds, 162 (13.2%) in horses, 116 (9.4%) in cattle, 26 (2.1%) in sheep and goats, 22 (1.8%) in rhinoceroses, 16 (1.3%) in pigs, 8 (0.6%) in crocodiles, 6 (0.5%) in cats and 6 (0.5%) in leopards. Food animals accounted for 83.5% of the total isolations, with cattle and poultry representing approximately 72.7%. Forty-two (3.4 %) isolates were found from non-food animals that include rhinoceroses (n = 22), crocodiles (n = 8), leopards (n = 6) and cats (n = 6). Salmonella Heidelberg was the most frequently isolated serotype, whereas S. Typhimurium had the widest zoological distribution. Clinical laboratory isolation of different Salmonella serotypes from various hosts may aid in recognising the threat to livestock, public and environmental health. Moreover, it may also highlight the potential zoonotic and food safety risk implications of the detected Salmonella serotypes.
    Salmonella enterica
    Subspecies
    Citations (28)
    Summary As Salmonella enterica is an important pathogen of food animals, surveillance programmes for S. enterica serovars have existed for many years in the United States. Surveillance programmes serve many purposes, one of which is to evaluate alterations in the prevalence of serovars that may signal changes in the ecology of the target organism. The primary aim of this study was to evaluate changes in the proportion of S. enterica serovars isolated from swine over a near 20‐year observation period (1997–2015) using four longitudinal data sets from different food animal species. The secondary aim was to evaluate correlations between changes in S. enterica serovars frequently recovered from food animals and changes in S. enterica serovars associated with disease in humans. We found decreasing proportions of S. enterica serovar Typhimurium, serovar Derby and serovar Heidelberg and increasing proportions of S. enterica serovar 4,[5],12:i:‐, serovar Infantis and serovar Johannesburg in swine over time. We also found positive correlations for the yearly changes in S. enterica serovar 4,[5],12:i:‐, serovar Anatum and serovar Johannesburg between swine and human data; in S. enterica Worthington between avian and human data; and in S. enterica serovar 4,[5],12:i:‐ between bovine and human data. We found negative correlations for the yearly changes in S. enterica serovar 4,[5],12:i:‐ and serovar Johannesburg between avian and human data.
    Salmonella enterica
    Citations (14)
    ABSTRACT Eighteen (72%) of 25 badger social groups were found to excrete Salmonella enterica serovar Ried, S. enterica serovar Binza, S. enterica serovar Agama, or S. enterica serovar Lomita. Each serovar was susceptible to a panel of antimicrobials. Based on results of pulsed-field gel electrophoresis, the S. enterica serovar Agama and S. enterica serovar Binza isolates were very similar, but two clones each of S. enterica serovar Lomita and S. enterica serovar Ried were found. Badgers excreting S. enterica serovar Agama were spatially clustered.
    Salmonella enterica
    A retrospective study that involves the analysis of laboratory diagnostic data collected during the period 1996-2006 was conducted. A total of 3417 Salmonella isolations involving 183 different serotypes was recorded from 1999-2006, inclusive, at the Onderstepoort Veterinary Institute, Agricultural Research Council, South Africa. The most common serotypes were Salmonella enterica subspecies enterica serovar Typhimurium (917 incidents), Salmonella enterica subspecies enterica serovar Dublin (248 incidents), Salmonella enterica subspecies enterica serovar Enteritidis (232 incidents), Salmonella enterica subspecies enterica serovar Muenchen (164 incidents), Salmonella enterica subspecies enterica serovar Heidelberg (118 incidents) and Salmonella enterica subspecies enterica serovar Chester (113 incidents). The number of recorded Salmonella isolations over the period 1996 to 2006 varies considerably from year to year The peak of 693 isolations was recorded in 1997, and the lowest, 108 incidents, in 2001. Of the total incidents recorded during the period of survey, 2410 (70.5%) occurred in poultry and other birds, 641 (18.75%) occurred in cattle, 255 (7.46) in pigs and 111 (3.24%) in sheep. Despite the large number of serotypes isolated (183), 52 % of incidents were due to only 6 serotypes in decreasing order of prevalence: S. Typhimurium, S. Dublin, S. Enteritidis, S. Muenchen, S. Heidelberg and S. Chester. Serovar Typhimurium was the most common serotype and was detected in all animal species sampled, with, 65% (598) of the incidents occurring in poultry and 20% (187) occurring in cattle. Of the total of 248 incidents of S. Dublin serotype, 95.6% (237) of incidents occurred in cattle and of the 232 isolates of S. Enteritidis, 223 (96%) originated from poultry. Serovar Choleraesuis was identified in 16 isolates from pigs. The following 4 serotypes were each recorded in more than 50 incidents: S. Hadar (102), S. Schwarzengrund (99), S. Mbandaka (94) and S. Sandiego (73). The trends of annual incidence of Salmonella infection in cattle, sheep, pigs, poultry and other birds during the 11-year period and the distribution of the main serotypes in individual species of animals from 1996-2006 are discussed.
    Salmonella enterica
    Subspecies
    Citations (35)