Data from Expression of Neuroendocrine Factor VGF in Lung Cancer Cells Confers Resistance to EGFR Kinase Inhibitors and Triggers Epithelial-to-Mesenchymal Transition
Wen HwangYu‐Fan ChiuMing-Han KuoKuan-Lin LeeAn-Chun LeeChia-Cherng YuJunn-Liang ChangWen‐Chien HuangShih-Hsin HsiaoSey‐En LinYu‐Ting Chou
0
Citation
0
Reference
10
Related Paper
Abstract:
<div>Abstract<p>Mutations in EGFR drive tumor growth but render tumor cells sensitive to treatment with EGFR tyrosine kinase inhibitors (TKI). Phenotypic alteration in epithelial-to-mesenchymal transition (EMT) has been linked to the TKI resistance in lung adenocarcinoma. However, the mechanism underlying this resistance remains unclear. Here we report that high expression of a neuroendocrine factor termed VGF induces the transcription factor TWIST1 to facilitate TKI resistance, EMT, and cancer dissemination in a subset of lung adenocarcinoma cells. VGF silencing resensitized EGFR-mutated lung adenocarcinoma cells to TKI. Conversely, overexpression of VGF in sensitive cells conferred resistance to TKIs and induced EMT, increasing migratory and invasive behaviors. Correlation analysis revealed a significant association of VGF expression with advanced tumor grade and poor survival in patients with lung adenocarcinoma. In a mouse xenograft model of lung adenocarcinoma, suppressing VGF expression was sufficient to attenuate tumor growth. Overall, our findings show how VGF can confer TKI resistance and trigger EMT, suggesting its potential utility as a biomarker and therapeutic target in lung adenocarcinoma. <i>Cancer Res; 77(11); 3013–26. ©2017 AACR</i>.</p></div>Ex vivo
Cell therapy
Cite
Citations (7)
Cite
Citations (0)
Cite
Citations (0)
Cite
Citations (0)
Mesenchymal stromal cells derived from amnion (AM-MSCs) can be easily obtained in large quantity by less invasive method in comparison to bone marrow-derived MSCs (BM-MSCs). However, the biological and immunosuppressive properties of AM-MSCs are still poorly characterized. Previous studies demonstrated that BM-MSCs expressed indoleamine 2,3-dioxygenase (IDO) to suppress T-cell responses. This study was designed to address whether IDO contributes to the immunosuppressive function of AM-MSCs. MSCs isolated from amnion were cultured in complete medium similar to BM-MSCs. After culture, AM-MSCs exhibited spindle shape morphology and expressed MSC markers similar to that of BM-MSCs. In addition, AM-MSCs were able to differentiate into adipocytes and osteoblasts. Fascinatingly, AM-MSCs and BM-MSCs exhibited comparable degree of immunosuppressive effect when they were co-cultured with activated T-cells. In addition, IDO secreted by AM-MSCs was responsible for induction of immunosuppressive activities in the same manner as BM-MSCs. Taken together; the results of the present study demonstrate that while AM-MSCs and BM-MSCs show similar immunosuppressive effect, AM-MSCs may have additional advantage over the BM-MSCs in terms of availability. Therefore, AM-MSCs might be considered a potential source for therapeutic applications especially for treatment of immune related diseases.
Amnion
Cite
Citations (32)
Objective To compare the efficacy of intracavernosal injection of autologous and allogeneic mesenchymal stem cells as potential treatment of erectile dysfunction in an experimental rat model. Methods Mesenchymal stem cells were isolated from rat paratesticular fat tissue. Bilateral cavernous nerve injury was carried out followed by immediate intracavernosal injection of either autologous or allogeneic mesenchymal stem cells or mesenchymal stem cell lysates. One month after injection, erectile function was evaluated by means of intracavernosal pressure measurement. All rats were eventually killed, and penile tissues were taken for immunhistochemical and molecular investigation. Results A total of 36 S prague– D awley rats were used. The mean maximum intracavernosal pressure in the sham‐operated, autologous and allogeneic mesenchymal stem cell injection groups were significantly better compared with the vehicle injection group (80.5 [3.56], 71.1 [2.9] and 69.2 [3.2] vs 40.33 [4.4], respectively). Mean maximum intracavernosal pressure to mean arterial pressure ratios in the autologous and allogeneic mesenchymal stem cell and mesenchymal stem cell lysate injection groups were not significantly different. Conclusions Intracavernosal injection of both autologous or allogeneic mesenchymal stem cells improve erectile functions in a rat model of cavernous nerve injury. Allogeneic mesenchymal stem cells might provide clinicians with ready to use, standardized and, in certain cases, more effective products. More studies focusing on long‐term immunological aspects of allogeneic mesenchymal stem cells are required.
Stem Cell Therapy
Intracavernous injection
Cite
Citations (31)
The results of recent clinical trials using mesenchymal stem cells (MSCs) have been unsatisfactory, indicating that current MSC-based therapies need to be improved. We and others have previously demonstrated that MSCs activate complement by unknown mechanisms after infusion, leading to damaged MSCs. In the study reported here, we found that incorporation of N-glycolylneuraminic acid onto MSCs during in vitro culture was a factor in the activation of complement by MSCs. In addition, we developed a way to "paint" heparin onto MSCs. This novel method improved the viability of MSCs and enhanced their function after infusion by directly inhibiting complement and by recruiting factor H, another potent complement inhibitor in serum, onto the surface of the MSCs. These data suggest that cell-surface engineering of MSCs with heparin to locally inhibit complement activation on MSCs might be a straightforward and effective method for improving the outcome of current MSC-based therapies.
Complement
Viability assay
Cite
Citations (33)
Cord lining
Cite
Citations (1)
Cite
Citations (0)