logo
    Abstract:
    Abstract Regionalized disease prevalence is a common feature of the gastrointestinal tract. Herein, we employed regionally resolved Smart-seq3 single-cell sequencing, generating a comprehensive cell atlas of the adult mouse oesophagus. Characterizing the oesophageal axis, we unveil non-uniform distribution of epithelial basal cells, fibroblasts and immune cells. In addition, we reveal a position-dependent, but cell subpopulation-independent, transcriptional signature, collectively generating a regionalized oesophageal landscape. Combining in vivo models with organoid co-cultures, we demonstrate that proximal and distal basal progenitor cell states are functionally distinct. We find that proximal fibroblasts are more permissive for organoid growth compared to distal fibroblasts and that the immune cell profile is regionalized in two dimensions, where proximal-distal and epithelial-stromal gradients impact epithelial maintenance. Finally, we predict and verify how WNT-, BMP-, IGF-and NRG-signalling are differentially engaged along the oesophageal axis. We establish a cellular and transcriptional framework for understanding oesophageal regionalization, providing a functional basis for epithelial disease susceptibility.
    Keywords:
    Organoid
    Cell type
    Culturing and passaging of iPSC derived intestinal organoids derived using STEMDIFF intestinal organoid kit. We usually use organoids after 5 passages once consistent growth has been established and until 15th passage.
    Organoid
    Organoids are expected to function as effective human organ models for precision cancer studies and drug development. Currently, primary tissue-derived organoids, termed non-engineered organoids (NEOs), are produced by manual pipetting or liquid handling that compromises organoid-organoid homogeneity and organoid-tissue consistency. Droplet-based microfluidics enables automated organoid production with high organoid-organoid homogeneity, organoid-tissue consistency, and a significantly improved production spectrum. It takes advantage of droplet-encapsulation of defined populations of cells and droplet-rendered microstructures that guide cell self-organization. Herein, we studied the droplet-engineered organoids (DEOs), derived from mouse liver tissues and human liver tumors, by using transcriptional analysis and cellular deconvolution on bulk RNA-seq data. The characteristics of DEOs are compared with the parental liver tissues (or tumors) and NEOs. The DEOs are proven higher reproducibility and consistency with the parental tissues, have a high production spectrum and shortened modeling time, and possess inter-organoid homogeneity and inter-tumor cell heterogeneity.
    Organoid
    This protocol defines the procedure for cryopreservation of organoid cultures. It has been developed by the organoid derivation team within the Cellular Generation and Phenotyping Group at the Wellcome Sanger Institute. The team has extensive experience passaging and expanding organoid models. The method described has mainly been used for cancer organoids derived from colon, pancreas and oesophageal tumours.
    Organoid
    This protocol describes the passaging of organoid cultures. It has been developed by the organoid derivation team within the Cellular Generation and Phenotyping Group at the Wellcome Sanger Institute. The team has extensive experience passaging and expanding organoid models. The method described has mainly been used for the passaging cancer organoids with successful propagation of organoids derived from colon, pancreas and oesophageal tumours.
    Organoid
    Sanger sequencing
    Abstract Three-dimensional (3D) organoid culture holds great promises in cancer precision medicine. However, Matrigel and stem cell-stimulating supplements are necessary for culturing 3D organoid cells. It costs a lot of money and consumes more time and effort compared with 2D cultured cells. Therefore, the establishment of cheaper and Matrigel-free organoid culture that can maintain the characteristics of a part of 3D organoids is demanded. In the previous study, we established a dog bladder cancer (BC) 3D organoid culture system by using their urine samples. Here, we successfully isolated cells named “2.5D organoid” from multiple strains of dog BC 3D organoids using 2.5 organoid media. The cell proliferation speed of 2.5D organoids was faster than parental 3D organoid cells. The expression pattern of stem cell markers was close to 3D organoids. Injection of 2.5D organoid cells into immunodeficient mice formed tumors and showed the histopathological characteristics of urothelial carcinoma similar to the injection of dog BC 3D organoids. The 2.5D organoids had a similar sensitivity profile for anti-cancer drug treatment to their parental 3D organoids. These data suggest that our established 2.5D organoid culture method might become a reasonable and useful tool instead of 3D organoids in dog BC research and therapy.
    Organoid
    Matrigel
    3D cell culture
    Citations (41)
    Organoids are three-dimensional structures formed by self-organizing growth of cells in vitro, which own many structures and functions similar with those of corresponding in vivo organs. Although the organoid culture technologies are rapidly developed and the original cells are abundant, the organoid cultured by current technologies are rather different with the real organs, which limits their application. The major challenges of organoid cultures are the immature tissue structure and restricted growth, both of which are caused by poor functional vasculature. Therefore, how to develop the vascularization of organoids has become an urgent problem. We presently reviewed the progresses on the original cells of organoids and the current methods to develop organoids vascularization, which provide clues to solve the above-mentioned problems.类器官是在体外通过细胞自组织生长而形成的三维结构,它具有许多与相应在体器官相类似的结构和功能。类器官培养技术发展迅速,起源细胞类型丰富,但是现有技术培养的类器官和真正的器官还具有很大差别,限制了类器官的广泛应用。限制类器官的主要问题有组织结构不成熟和生长受限,而缺少功能性血管系统则是根本原因,如何在类器官模型中发展血管系统已成为亟待解决的问题。本文主要综述了类器官的起源细胞以及类器官血管化的研究进展,为后续研究提供了线索。.
    Organoid
    Organoids, three-dimensional in vitro tissue cultures derived from pluripotent (embryonic or induced) or adult stem cells, are promising models for the study of human processes and structures, disease onset and preclinical drug development. An increasing amount of omics data has been generated for organoid studies. Here, we introduce OrganoidDB (http://www.inbirg.com/organoid_db/), a comprehensive resource for the multi-perspective exploration of the transcriptomes of organoids. The current release of OrganoidDB includes curated bulk and single-cell transcriptome profiles of 16 218 organoid samples from both human and mouse. Other types of samples, such as primary tissue and cell line samples, are also integrated to enable comparisons with organoids. OrganoidDB enables queries of gene expression under different modes, e.g. across different organoid types, between different organoids from different sources or protocols, between organoids and other sample types, across different development stages, and via correlation analysis. Datasets and organoid samples can also be browsed for detailed information, including organoid information, differentially expressed genes, enriched pathways and single-cell clustering. OrganoidDB will facilitate a better understanding of organoids and help improve organoid culture protocols to yield organoids that are highly similar to living organs in terms of composition, architecture and function.
    Organoid
    Cell type
    Citations (10)
    This SOP defines the procedure for thawing a frozen cryovial of organoids into 1 well of a 6 well plate for further culture. It has been developed by the organoid derivation team within the Cellular Generation and Phenotyping Group at the Wellcome Sanger Institute. The team has extensive experience passaging and expanding organoid models. The method described has mainly been used for cancer organoids with successful propagation of organoids derived from colon, pancreas and oesophageal tumours.
    Organoid