Tuning selectivity in low-temperature Fischer-Tropsch synthesis by applying gas recycle mode
2
Citation
55
Reference
10
Related Paper
Citation Trend
Keywords:
Fischer–Tropsch process
Fischer–Tropsch process
Gas to liquids
Cite
Citations (149)
Fischer–Tropsch process
Organometallic Chemistry
Cite
Citations (57)
This chapter contains sections titled: Basics of Fischer–Tropsch Chemistry and BTL Cobalt Fischer–Tropsch Catalysis Fischer–Tropsch Reactors Biomass Pretreatment and Gasification Biomass-to-Liquids Process Concepts BTL Pilot and Demonstration Plants XTL Energy and Carbon Efficiencies BTL Summary and Outlook References
Fischer–Tropsch process
Gas to liquids
Carbon fibers
Cite
Citations (10)
Fischer–Tropsch process
Liquid phase
Cite
Citations (0)
Abstract Die thermische Zersetzung des Eisencarbonyls Fe 3 (CO) 12 an Magnesiumoxidoberflächen im Vakuum führt zu Clusterverbindungen mit nul1wertigem Eisen.
Fischer–Tropsch process
Cite
Citations (1)
A mechanically agitated slurry reactor system was designed, built and operated to investigate the liquid phase methanol (LPMeOH{trademark}) synthesis process. In this reactor system, syngas reacts in the presence of the methanol synthesis catalyst (Cu/ZnO/Al{sub 2}O{sub 3}), which is slurried in the oil phase, and is thoroughly agitated by a mechanically driven impeller. Synthesis gas consisting of H{sub 2}, CO, CO{sub 2} and CH{sub 4} is mainly used as a feedstock in the synthesis of methanol. The sources of syngas for methanol synthesis have become very diverse, ranging from syngas obtained from Lurgi gasifiers (H{sub 2}-rich syngas), to syngas obtained from industrial gasifiers like Texaco and Koppers Totzek (CO-rich syngas). The effect of syngas composition, ranging from CO-rich to H{sub 2}-rich syngas, on the productivity of methanol was investigated. The development of a kinetic rate expression and the effect on equilibrium conversion, using H{sub 2}-rich syngas and CO-rich syngas, will be compared. These results will be of immense help in the modeling of the reactor system, and assist in the design, development, and scale-up of the LPMeOH process.
Cite
Citations (0)
硅石,氧化铝,和活性炭支持了铁钴催化剂被早期的湿受精准备。这些催化剂被赌注, X 射线衍射(XRD ) ,和规划温度的减小(TPR ) 描绘了。为公司加氢在不同搬运人上支持的铁钴的活动和选择在 1.5 MPa 的条件下面被学习, 493 K, 630 h (? 1 ) ,并且 1.6 的 H2/CO 比率。结果显示这项活动, C4 olefin/(C4 olefin+C4 石蜡) 在 Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/A12O3 和 Fe-Co/AC2 的顺序的比率,和 C5 olefin/(C5 olefin+C5 石蜡) 减少。Fe-Co/SiO2 的活动到达了最大值。TPR 的结果证明 Fe-Co/SiO2 催化剂,到某程度不同。XRD 模式证明 Fe-Co/SiO2 催化剂与其它显著地不同;它有二衍射峰。活跃尖晶石阶段与支持被相关。给词调音:Fischer-Tropsch;二金属的催化剂;铁;钴;支持;硅石;氧化铝;活性炭;syngas
Fischer–Tropsch process
Bimetallic strip
Cite
Citations (0)
Fischer–Tropsch process
Cite
Citations (7)
This paper examines the Fischer-Tropsch technology for the biomass-to-clean fuels scenario.A comparison of the activities,selectivities and lifetimes of iron and cobalt catalysts for Fischer-Tropsch synthesis is made.For the more severe conditions,iron is the more active catalyst,whereas a cobalt catalyst may be more active at low severity conditions.In spite of many reports,there are still considerable differences in defining catalyst activity.The selectivity for methane likewise shows a wide range of reported results.Under the proper conditions,both catalysts are capable of operating for 6 months or more.
Fischer–Tropsch process
Cite
Citations (0)
Fischer–Tropsch process
Cite
Citations (0)