Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites
5
Citation
58
Reference
10
Related Paper
Citation Trend
Abstract:
The emergence of MDR in plant pathogens is a threat to plant disease management and leads to the use of excessive fungicides. Botrytis cinerea is of particular concern because its MDR has widely emerged in the field. Understanding its genesis is the first step for controlling MDR. In this study, the contribution of PSMs to MDR has been examined. Effective management of this pathogen in agroecosystems relies on a better understanding of how it copes with phytochemicals or fungicides.Keywords:
Secondary metabolite
Secondary metabolism
Filamentous fungi possess great potential as sources of medicinal bioactive compounds, such as antibiotics, but efficient production is hampered by a limited understanding of how their metabolism is regulated. We investigated the metabolism of six secondary metabolite-producing fungi of the Penicillium genus during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. A coexpression analysis revealed that expression of biosynthetic genes correlates with expression of genes associated with pathways responsible for the generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for the supply of precursors for secondary metabolism and suggest that the regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying fungal species that are optimized for the production of specific secondary metabolites and in designing metabolic engineering strategies to develop high-yielding fungal cell factories for production of secondary metabolites. IMPORTANCE Secondary metabolites are a major source of pharmaceuticals, especially antibiotics. However, the development of efficient processes of production of secondary metabolites has proved troublesome due to a limited understanding of the metabolic regulations governing secondary metabolism. By analyzing the conservation in gene expression across secondary metabolite-producing fungal species, we identified a metabolic signature that links primary and secondary metabolism and that demonstrates that fungal metabolism is tailored for the efficient production of secondary metabolites. The insight that we provide can be used to develop high-yielding fungal cell factories that are optimized for the production of specific secondary metabolites of pharmaceutical interest.
Secondary metabolism
Secondary metabolite
Metabolic pathway
Primary metabolite
Metabolic Engineering
Cite
Citations (16)
Secondary metabolite accumulation in cell suspensions is the result of an interplay between primary metabolism, supplying the machinery, the energy, and the precursors, and the secondary metabolic pathways. For this reason, a successful strategy for producing considerable amounts of secondary plant products can hardly be obtained without the knowledge of the interactions between primary and secondary metabolism. These interactions are best studied in cell suspensions that produce significant amounts of secondary metabolites.
Secondary metabolism
Secondary metabolite
Suspension culture
Primary (astronomy)
Anthraquinones
Primary metabolite
Suspension
Metabolic pathway
Cite
Citations (3)
Putative methyltransferases are thought to be involved in the regulation of secondary metabolites in filamentous fungi. Here, we report the effects of overexpression of a predicted LaeA-like methyltransferase gene llm1 on the synthesis of secondary metabolites in Aspergillus cristatus. Our results revealed that overexpression of the gene llm1 in A. cristatus significantly hindered the production of conidia and enhanced sexual development, and reduced oxidative tolerance to hydrogen peroxide. Compared with the wild-type, the metabolic profile of the overexpression transformant was distinct, and the contents of multiple secondary metabolites were markedly increased, mainly including terpenoids and flavonoids, such as (S)-olEuropeic acid, gibberellin A62, gibberellin A95, ovalitenone, PD 98059, and 1-isomangostin. A total of 600 significantly differentially expressed genes (DEGs) were identified utilizing transcriptome sequencing, and the DEGs were predominantly enriched in transmembrane transport and secondary metabolism-related biological processes. In summary, the strategy of overexpressing global secondary metabolite regulators successfully activated the expression of secondary metabolite gene clusters, and the numerous secondary metabolites were greatly strengthened in A. cristatus. This study provides new insights into the in-depth exploitation and utilization of novel secondary metabolites of A. cristatus.
Secondary metabolite
Secondary metabolism
Cite
Citations (5)
Secondary metabolite
Secondary metabolism
Identification
Gene cluster
Cite
Citations (173)
Secondary metabolite
Secondary metabolism
Hairy Root Culture
Cite
Citations (37)
Mycoparasitic fungi, fungi preying on other fungal species, are prolific producers of volatile and non-volatile secondary metabolites. Several secondary metabolites are produced during mycoparasitism to weaken the host and support attack and parasitism. Further, evidence accumulated that some secondary metabolites also act as communication molecules. Besides their antagonistic activity, several fungal mycoparasites exhibit beneficial effects on plants and some of their secondary metabolites have plant growth-promoting and defense stimulating activities. As many secondary metabolism-associated gene clusters remain silent under standard laboratory conditions, the full variety as well as the underlying biosynthetic pathways employed by fungal mycoparasites for secondary metabolite production still await clarification. Nonetheless, the variety of currently known secondary metabolites and their range of activities is impressive already and they exhibit a great potential for agriculture, pharmacology and other industrial applications.
Secondary metabolite
Secondary metabolism
Cite
Citations (20)
Fungal secondary metabolism and morphological development have been shown to be intimately associated at the genetic level. Much of the literature has focused on the co-regulation of secondary metabolite production (e.g. sterigmatocystin and aflatoxin in Aspergillus nidulans and Aspergillus flavus, respectively) with conidiation or formation of sexual fruiting bodies. However, many of these genetic links also control sclerotial production. Sclerotia are resistant structures produced by a number of fungal genera. They also represent the principal source of primary inoculum for some phytopathogenic fungi. In nature, higher plants often concentrate secondary metabolites in reproductive structures as a means of defense against herbivores and insects. By analogy, fungi also sequester a number of secondary metabolites in sclerotia that act as a chemical defense system against fungivorous predators. These include antiinsectant compounds such as tetramic acids, indole diterpenoids, pyridones and diketopiperazines. This chapter will focus on the molecular mechanisms governing production of secondary metabolites and the role they play in sclerotial development and fungal ecology, with particular emphasis on Aspergillus species. The global regulatory proteins VeA and LaeA, components of the velvet nuclear protein complex, serve as virulence factors and control both development and secondary metabolite production in many Aspergillus species. We will discuss a number of VeA and LaeA-regulated secondary metabolic gene clusters in A. flavus that are postulated to be involved in sclerotial morphogenesis and chemical defense. The presence of multiple regulatory factors that control secondary metabolism and sclerotial formation suggests that fungi have evolved these complex regulatory mechanisms as a means to rapidly adapt chemical responses to protect sclerotia from predators, competitors and other environmental stresses.
Secondary metabolism
Secondary metabolite
Conidiation
Aspergillus nidulans
Sterigmatocystin
Chemical defense
Gliotoxin
Cite
Citations (139)
Enormous metabolic versatility and richness of secondary metabolism is one of the most characteristic traits of fungi. These secondary metabolites are importantly required during various physiological processes, such as to combat the immune system, to acquire essential micronutrients, to compete in the environment and hosts, and pathogenicity. The fungal secondary metabolites are of diverse nature in chemical structures and biological activities. The functional efficiency of these secondary metabolites depends on physicochemical properties of the molecules. The physicochemical properties of fungal secondary metabolites were calculated and analysed to study its relation with functions and biological role. The analyses suggest varied pattern of correlation between molar refractivity, topological polar surface area and water solubility of secondary metabolites. Based on overall result it has inferred that the above characteristic physicochemical parameters may provide the chemical characteristics and functional specificity of a secondary metabolite.
Secondary metabolite
Secondary metabolism
Primary metabolite
Cite
Citations (2)
Secondary metabolism
Secondary metabolite
Streptomycetaceae
Primary metabolite
Cite
Citations (99)
Secondary metabolism
Secondary metabolite
Environmental stress
Plant metabolism
Secondary growth
Primary metabolite
Cite
Citations (20)