logo
    The utilization and advancement of quartz crystal Microbalance (QCM): A mini review
    16
    Citation
    102
    Reference
    10
    Related Paper
    Citation Trend
    A piezoelelctric quartz-crystal plate can be used as a microbalance (a quartz-crystal microbalance, QCM). When substances adsorbed on a gold electrode, a fundamental frequency of a QCM is decreased linearly with increasing mass on the electrode. The host molecule-immobilized QCM is used as a biosensor responding to the addition of guest molecules in aqueous solution in nanogram level.
    Quartz Crystal Microbalance
    Crystal (programming language)
    Citations (8)
    Quartz crystal microbalance with dissipation (QCM-D) is a novel technology for the analysis of surface phenomena, which provides a real-time and label-free method of studying macromolecule adsorption and/or interaction on various surfaces with high sensitivity (1 ng/cm2). In recent years, the development of QCM-D instruments and mathematical modeling techniques has enabled a dramatic boost in QCM-D's novel applications in biomaterial research. In this chapter, we first explain the instrumentation and theory behind the QCM-D platform. Then some well-studied areas of application are introduced, including real-time monitoring adsorption and desorption kinetics; thickness, hydration and structural changes of attached biopolymers layers; mechanisms and kinetic studies of specific immunoassays; studies of the affinity of nanoscaled materials to biomolecules; and so on. Plenty of studies have also reported the design of a QCM-D sensor for immunosensing, with high specificity and sensitivity for food, agricultural and pharmaceutical applications.
    Quartz Crystal Microbalance
    Biomolecule
    Citations (16)
    In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Deltaf), a simultaneous parameter related to the energy loss or dissipation (DeltaD) of the system is also measured. Deltaf essentially measures changes in the mass attached to the sensor surface, while DeltaD measures properties related to the viscoelastic properties of the adlayer. Thus, QCM-D measures two totally independent properties of the adlayer. The focus of this review is an overview of the QCM-D technology and highlights of recent applications. Specifically, recent applications dealing with DNA, proteins, lipids, and cells will be detailed. This is not intended as a comprehensive review of all possible applications of the QCM-D technology, but rather a glimpse into a few highlighted application areas in the biomolecular field that were published in 2007.
    Quartz Crystal Microbalance
    Characterization
    Citations (279)
    Sensors of quartz crystal microbalance (QCM) based on thin nano scale films for detection of volatile chemicals by utilizing resonance frequency change allow to detect at the trace mass change of the chemicals attached on surfaces of the QCM at nano gram level. Development of the detection film for the QCM sensor is important, because the characteristics of the QCM sensor depend on the structure of the detection film. The detection mechanisms of the QCM sensors are classified into three types as follows: a) direct reaction type, b) hybrid reaction type, c) detection membrane type (increase or decrease system). The recently developed sensors detected volatile chemicals at extremely low concentrations almost independent on temperature and humidity.
    Quartz Crystal Microbalance
    Citations (2)
    In this paper we study the possibility to develop an alternative Analytical Method for Investigation in Real‐Time of Liquid Properties, the layout and the operation with Quartz Crystal Microbalance (QCM) Systems. The quartz crystal microbalance (QCM) can be accepted as a powerful technique to monitor adsorption and desorption processes at interfaces in different chemical and biological areas. In our paper, Quartz Crystal Microbalance is used to monitor in real‐time the polymer adsorption followed by azoic dye adsorption and then copolymer adsorption as well as optimization of interaction processes and determination of solution effects on the analytical signal. The solutions of azoic dye (5⋅10−4 g/L, 5⋅10−5 g/L and 5⋅10−6 g/L in DMF) are adsorbed at gold electrodes of QCM and the sensor responses are estimated through decrease and increase of QCM frequency. Also, the response of the sensor at maleic anhydride (MA) copolymer with styrene St (MA‐St copolymer concentration of solution: 5⋅10−4 g/L; 5⋅10−5 g/L and 5⋅10−6 g/L in DMF) is fast, large, and reversible. The detailed investigation showed the fact that the Quartz Crystal Microbalance is a modern method to study a wider number of physical and chemical properties related to the surface and interfacial processes of synthesized copolymer leading to a higher reliability of the research results.
    Quartz Crystal Microbalance
    Maleic anhydride
    Citations (3)
    The quartz crystal microbalance with dissipation (QCM-D) represented a substantial breakthrough in the use of the QCM sensor in diverse applications ranging from environmental monitoring to biomedical diagnostics. To obtain the required selectivity and sensitivity of a volatile organic compounds (VOC) sensor, it is necessary to coat the QCM sensor with a sensing film. As the QCM sensor is coated with the sensing film, an increase in the dissipation factor occurs, resulting in a shorter and shorter ring-down time. This decrease in ring-down time makes it difficult to implement the QCM-D method in an economical and portable configuration from the perspective of large-scale applications. To compensate for this effect, a regenerative method is proposed by which the damping effect produced by the sensing film is eliminated. In this sense, a regenerative circuit as an extension to a virtual instrument is proposed to validate the experimental method. The simulation of the ring-down time for the QCM sensor in the air considering the effect of the added sensing film, followed by the basic theoretical concepts of the regenerative method and the experimental results obtained, are analyzed in detail in this paper.
    Quartz Crystal Microbalance
    The nationally-recognized Susquehanna Chorale will delight audiences of all ages with a diverse mix of classic and contemporary pieces. The ChoraleAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚™s performances have been described as AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚œemotionally unfiltered, honest music making, successful in their aim to make the audience feel, to be moved, to be part of the performance - and all this while working at an extremely high musical level.AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ Experience choral singing that will take you to new heights!
    Citations (0)