Potential prognostic value of ITPR1 in thyroid carcinoma: An integrated analysis
0
Citation
47
Reference
10
Related Paper
Objective: To screen the differential expression genes of Kanglaite Injection in treating cancer cachexia. Methods: mRNA was extracted from the blood cells of T739 animal model of C.C., hybridizated respectively on 20S gene chip. Analysis discuss on differential expression genes was carried out. Results: 5 differential expression genes were obtained. Among these genes, 4 genes were up-regulated and 1 gene was down-regulated. Most of these genes were related with immunity and metabolism of tumor. Conclusion: cDNA microarray for analysis of gene expression patterns is a powerful method to identify associated genes of Kanglaite.
Cancer Cachexia
Gene chip analysis
Cite
Citations (0)
In a soil bioassay, adult Deroceras reticulatum (Stylommatophora: Limacidae) and three different weight-classes of young Arion lusitanicus (Stylommatophora: Arionidae) were exposed to a single dosage (170 dauer larvae per g of soil) of the nematode Phasmarhabditis hermaphrodita monoxenically associated with the bacterium Moraxella osloensis. Groups of 10 slugs were continuously exposed to nematodes for 4 days, and then transferred individually to Petri-dishes containing a disc of Chinese cabbage as food. Food consumption—measured by image analysis—and slug mortality were recorded daily for 10 days. Food consumption was inhibited in both slug species tested. D. reticulatum stopped feeding 6 days after the start of nematode treatment, while all A. lusitanicus continued to feed. However, in the three weight-classes of A. lusitanicus (0.15 g, 0.24 g, 0.45 g), food consumption was reduced by at least 50 %. The greatest reduction in feeding, nearly 90 %, was noted in the smallest A. lusitanicus. The nematodes successfully killed D. reticulatum but were less efficient at killing young A. lusitanicus. At the end of the experiment, mortality was highest in D. reticultatum (98 %) and the smallest weight-class of A. lusitanicus (47 %). There was almost no mortality in the largest weight-class of A. lusitanicus treated with nematodes. P. hermaphrodita associated with M. osloensis can thus be considered as a biological control agent for young stages of A. lusitanicus for its effect as a feeding inhibitor, rather than for its ability to kill the slugs.
Slug
Cite
Citations (41)
ABSTRACT It is not understood what evolutionary factors drive some genes to be expressed at a higher level than others. Here, we hypothesized that a gene’s function plays an important role in setting expression level. First, we established that each S. cerevisiae gene is maintained at a specific expression level by analyzing RNA-seq data from multiple studies. Next, we found that mRNA and protein levels were maintained for the orthologous genes in S. pombe , showing that gene function, conserved in orthologs, is important in setting expression level. To further explore the role of gene function in setting expression level, we analyzed mRNA and protein levels of S. cerevisiae genes within gene ontology (GO) categories. The GO framework systematically defines gene function based on experimental evidence. We found that several GO categories contain genes with statistically significant expression extremes; for example, genes involved in translation or energy production are highly expressed while genes involved in chromosomal activities, such as replication and transcription, are weakly expressed. Finally, we were able to predict expression levels using GO information alone. We created and optimized a linear equation that predicted a gene’s expression based on the gene’s membership in 161 GO categories. The greater number of GO categories with which a gene is associated, the more accurately expression could be predicted. Taken together, our analysis systematically demonstrates that gene function is an important determinant of expression level.
Pair-rule gene
Transcription
Cite
Citations (1)
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21 . Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53–p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.
Cite
Citations (125)
Evolutionary rates provide important information about the pattern and mechanism of evolution. Although the rate of gene sequence evolution has been well studied, the rate of gene expression evolution is poorly understood. In particular, it is unclear whether the gene expression level and tissue specificity influence the divergence of expression profiles between orthologous genes. Here we address this question using a microarray data set comprising the expression signals of 10,607 pairs of orthologous human and mouse genes from over 60 tissues per species. We show that the level of gene expression and the degree of tissue specificity are generally conserved between the human and mouse orthologs. The rate of gene expression profile change during evolution is negatively correlated with the level of gene expression, measured by either the average or the highest level among all tissues examined. This is analogous to the observation that the rate of gene (or protein) sequence evolution is negatively correlated with the gene expression level. The impacts of the degree of tissue specificity on the evolutionary rate of gene sequence and that of expression profile, however, are opposite. Highly tissue-specific genes tend to evolve rapidly at the gene sequence level but slowly at the expression profile level. Thus, different forces and selective constraints must underlie the evolution of gene sequence and that of gene expression.
Molecular evolution
Sequence (biology)
Rate of evolution
Divergence (linguistics)
Cite
Citations (148)
To study the genes differentially expressed in the liver of Kkay diabetic and normal mice by genomic-scale gene expression analysis.cDNA microarray chips containing 8,192 cDNAs were used to explore the gene expression pattern of Kkay mouse liver.One hundred and fifty-four genes were screened out, including 68 complete cDNAs and expressed sequence tags, and among them 40 genes were up-regulated and 114 genes were down-regulated respectively.Most of the gene expression analysis results were consistent with previous study, and the gene expression pattern of Kkay mouse based on cDNA microarray could be used for high-throughout screening out the genes associated with type 2 diabetes.
Cite
Citations (0)
Objective To analyze the differential gene expression profiling of liver in rats subjected to hemorrhagic shock(HS) and sham hemorrhage shock(SHAM) by gene chip technology, thus to evaluate the possible molecular pathogenesis of HS. Method 20 male Wistar rats were randomly divided into a SHAM group and a HS group, with 10 rats in each group. Hepatic gene expression profiles were detected by oligonucleotide microarrays of 5705 mouse genes in two groups for three times. Genes with ratio(R) > 2 were identified as up-regulated and R < 0.5 were identified as down-regulated. Biological function of differentially expressed genes was analyzed and 9 genes were selected to undergo semi-quantitative RT-PCR. Results Among the total 5705 probes detected,86 genes showed differential expression in HS group comparison with SHAM group. The expression levels of 72 genes were up-regulated while those of 14 genes were down-regulated significantly. Differentially expressed genes were classified according to their biological function: transport genes, transcription regulator genes, signaling genes, response to stress genes, metabolic genes, development genes and cell adhesion genes. Conclusions cDNA microarray is an efficient and high-throughout method to survey gene expression profiles in HS.The variation of those gene expressions might be a potential pathogenic mechanism for HS that may offer a novel target for further study of therapeutic strategies of HS.
Key words:
Hemorrhagic shock; DNA chip; Gene expression; liver
Cite
Citations (0)
Objective To investigate whether aspirin affected the MMP-2/9 and TIMP-1 gene expression and release in cultured macrophages of mice. Methods The mRNA expression of MMP-2/9 and TIMP-1 was determined by reverse transcription-polymerase chain reaction, while the protein level of MMP-2/9 and TIMP-1 in cultured cell supernatants was determined by enzyme linked immunosorbent assay after mouse celiac macrophages were treated with aspirin. Results The mRNA expression and protein level of MMP-2/9 was decreased after treatment with aspirin 12.5~50 μg/ml for 24 h, the decreased percentage was 18.6%~86.8%(mRNA expression) and 37.7%~53.3% (protein level) for MMP-2, 32.1%~78.3%(mRNA expression) and 6.5%~14.3%(protein level) for MMP-9, respectively. While the mRNA expression and protein level of TIMP-1 were inversely increased, the increased percentage was 60.5%~110.9%(mRNA expression) and 94.4%~80.6% (protein level), respectively. Conclusion Aspirin can inhibit the gene expression and release of MMP-2/9, and increase the gene expression and release of TIMP-1, and the effects might be good for the stabilization of atherosclerotic plaques and prevention of cardiovascular events.
Cite
Citations (0)
HLA-B-associated transcript 3 (BAT3) was originally identified as one of the genes located within human major histocompatibility complex. It encodes a large proline-rich protein with unknown function. In this study, we found that a fragment of the BAT3 gene product interacts with a candidate tumor suppressor, DAN, in the yeast-based two-hybrid system. We cloned the full-length rat BAT3 cDNA from a fibroblast 3Y1 cDNA library. Our sequence analysis has demonstrated that rat BAT3 cDNA is 3617 nucleotides in length and encodes a full-length BAT3 (1098 amino acids) with an estimated molecular mass of 114,801 daltons, which displays an 87.4% identity with human BAT3. The deletion experiment revealed that the N-terminal region (amino acid residues 1-80) of DAN was required for the interaction with BAT3. Green fluorescent protein-tagged BAT3 was largely localized in the cytoplasm of COS cells. Northern hybridization showed that BAT3 mRNA was expressed in all the adult rat tissues examined but predominantly in testis. In addition, the level of BAT3 mRNA expression was more downregulated in some of the transformed cells, including v-mos- and v-Ha-ras-transformed 3Y1 cells, than in the parental cells.
Cite
Citations (21)
SUMMARY A hitherto unrecorded virus having flexible rod‐shaped particles about 740–760 × 13 nm was isolated from Anthoxanthum odoratwn L. It was transmitted by sap inoculation, but not by several species of insect, seed or soil to 18 species of Gramineae including wheat, oats and barley. In susceptible species the virus normally produced a mosaic mottling of the leaves which was sometimes followed by a necrotic streaking or striping.
Mosaic virus
Cite
Citations (6)