logo
    A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond
    2
    Citation
    70
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    As cardiovascular diseases continue to be the leading cause of death worldwide, groundbreaking research is being conducted to mitigate their effects. This review looks into the potential of small nucleolar RNAs (snoRNAs) and the opportunity to use these molecular agents as therapeutic biomarkers for cardiovascular issues specific to the heart. Through an investigation of snoRNA biogenesis, functionality, and roles in cardiovascular diseases, this review relates our past and present knowledge of snoRNAs to the current scientific literature. Considering the initial discovery of snoRNAs and the studies thereafter analyzing the roles of snoRNAs in disease, we look forward to uncovering many other noncanonical functions that could lead researchers closer to finding preventive and curative solutions for cardiovascular diseases.
    Keywords:
    Small nucleolar RNA
    Small nucleolar RNA
    Genomic Imprinting
    Argonaute
    Transcription
    Citations (67)
    We have previously shown that 14q32 microRNAs play a crucial role in cardiovascular disease. Besides 54 microRNAs, the human 14q32 locus also encodes 41 small nucleolar RNAs (snoRNAs). The 41 snoRN...
    Small nucleolar RNA
    Citations (0)
    It is now evident that noncoding RNAs play key roles in regulatory networks determining cell fate and behavior, in a myriad of different conditions, and across all species. Among these noncoding RNAs are short RNAs, such as MicroRNAs, snoRNAs, and Piwi-interacting RNAs, and the functions of those are relatively well understood. Other noncoding RNAs are longer, and their modes of action and functions are also increasingly explored and deciphered. Short RNAs and long noncoding RNAs (lncRNAs) interact with each other with reciprocal consequences for their fates and functions. LncRNAs serve as precursors for many types of small RNAs and, therefore, the pathways for small RNA biogenesis can impinge upon the fate of lncRNAs. In addition, lncRNA expression can be repressed by small RNAs, and lncRNAs can affect small RNA activity and abundance through competition for binding or by triggering small RNA degradation. Here, I review the known types of interactions between small and long RNAs, discuss their outcomes, and bring representative examples from studies in mammals.
    Small nucleolar RNA
    Piwi-interacting RNA
    Argonaute
    RasiRNA
    Citations (101)
    Increasing noncoding RNAs (ncRNAs) were found to show abnormal expression patterns in various human cancers. Based on size, ncRNAs are generally grouped into two categories, short noncoding RNAs and long noncoding RNAs (lncRNAs) of greater than 200 nt. Small noncoding RNAs include microRNAs, piRNAs, snoRNAs, and endogenous siRNAs, out of the role of miRNAs in development and cancer biology has been extensively studied. In contrast to small noncoding RNAs like miRNAs, long noncoding RNAs are much less known concerning their functions in human cancers especially in thyroid cancer. The present review highlighted the roles of miRNAs and newly discovered lncRNAs in thyroid development, tumorigenesis, metastasis, and their clinical implication.
    Small nucleolar RNA
    Piwi-interacting RNA
    Box C/D snoRNPs, factors essential for ribosome biogenesis, are proposed to be assembled in the nucleoplasm before localizing to the nucleolus.However, recent work demonstrated the involvement of nuclear export factors in this process, suggesting that export may take place.Here we show that there are distinct distributions of U8 pre-snoRNAs and pre-snoRNP complexes in HeLa cell nuclear and cytoplasmic extracts.We observed differential association of nuclear export (PHAX, CRM1, and Ran) factors with complexes in the two extracts, consistent with nucleocytoplasmic transport.Furthermore, we show that the U8 pre-snoRNA in one of the cytoplasmic complexes contains an m 3 G cap and is associated with the nuclear import factor Snurportin1.Using RNA interference, we show that loss of either PHAX or Snurportin1 results in the incorrect localization of the U8 snoRNA.Our data therefore show that nuclear export and import factors are directly involved in U8 box C/D snoRNP biogenesis.The distinct distribution of U8 pre-snoRNP complexes between the two cellular compartments together with the association of both nuclear import and export factors with the precursor complex suggests that the mammalian U8 snoRNP is exported during biogenesis.
    Small nucleolar RNA
    Nuclear export signal
    ribosome biogenesis
    Nucleoporin
    Nuclear pore
    Nucleoplasm
    Ran
    Citations (45)
    Ribonucleic acids (RNAs) are very complex and their all functions have yet to be fully clarified. Noncoding genes (noncoding RNA, sequences, and pseudogenes) comprise 67% of all genes and they are represented by housekeeping noncoding RNAs (transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)) that are engaged in basic cellular processes and by regulatory noncoding RNA (short and long noncoding RNA (ncRNA)) that are important for gene expression/transcript stability. In this review, we summarize data concerning the significance of long noncoding RNAs (lncRNAs) in metabolic syndrome related disorders, focusing on adipose tissue and pancreatic islands.
    Small nucleolar RNA
    Pseudogene
    Small nuclear RNA
    Citations (70)
    Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite’s developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S . japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385 , which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.
    Small nucleolar RNA
    Cancer cells frequently upregulate ribosome production to support tumorigenesis. While small nucleolar RNAs (snoRNAs) are critical for ribosome biogenesis, the roles of other classes of noncoding RNAs in this process remain largely unknown. Here we performed CRISPRi screens to identify essential long noncoding RNAs (lncRNAs) in renal cell carcinoma (RCC) cells. This revealed that an alternatively-spliced isoform of lncRNA
    Small nucleolar RNA
    ribosome biogenesis
    Citations (0)
    Increasing noncoding RNAs (ncRNAs) were found to show abnormal expression patterns in various human cancers. Based on their length, ncRNAs are briefly divided into two categories. Transcripts that are shorter than 200 nucleotides are recognized as short/small noncoding RNAs and greater than 200 nucleotides as long noncoding RNAs (lncRNAs). Short/small noncoding RNAs include microRNAs, piRNAs, snoRNAs, and endogenous siRNAs. Numerous studies have revealed that these short/small ncRNA play important roles in multiple biological processes and tumorigenesis. In contrast to small ncRNAs, long noncoding RNAs are much less known concerning their functions in human cancers especially in hepatocellular carcinoma (HCC). In this review, we highlight recent progress regarding HCC development, tumorigenesis, metastasis, clinical implication, as well as the role in the risk of HBV infection.
    Small nucleolar RNA