The H i -rich ultra-diffuse galaxies follow the extended Schmidt law
1
Citation
40
Reference
10
Related Paper
Citation Trend
Abstract:
ABSTRACT The ${\rm H\, {\small I}}$-rich ultra-diffuse galaxies (HUDGs) offer a unique case for studies of star formation laws as they host low star formation efficiency and low-metallicity environments where gas is predominantly atomic. We collect a sample of six HUDGs in the field and investigate their location in the extended Schmidt law ($\Sigma _{\text{SFR }} \propto \left(\Sigma _{\text{star}}^{0.5} \Sigma _{\text{gas}}\right)^{1.09}$). They are consistent with this relationship well (with deviations of only 1.1σ). Furthermore, we find that HUDGs follow the tight correlation between the hydrostatic pressure in the galaxy mid-plane and the quantity on the x-axis ($\rm log(\Sigma _{star}^{0.5}\Sigma _{gas})$) of the extended Schmidt law. This result indicates that these HUDGs can be self-regulated systems that reach the dynamical and thermal equilibrium. In this framework, the stellar gravity compresses the disc vertically and counteracts the gas pressure in the galaxy mid-plane to regulate the star formation as suggested by some theoretical models.Keywords:
Sigma
Hydrostatic equilibrium
Star (game theory)
Ram pressure
Studies by Lada (2010) and Heiderman (2010) have suggested that star formation mostly occurs above a threshold in gas surface density Sigma of Sigma_c = 120 Msun pc^{-2} (A_K = 0.8). Heiderman infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area Sigma_SFR with increasing Sigma, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of Sigma_SFR, approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of Sigma_SFR vs. Sigma in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A=Sigma^{-3} for low-mass regions and A=Sigma^{-1} for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada similarly does not demand a particular threshold for star formation, and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse.
Sigma
Linear density
Low Mass
Star (game theory)
Stellar mass
Cite
Citations (0)
We investigate the impact of star formation and feedback on ram pressure stripping using high-resolution adaptive mesh simulations, building on a previous series of papers that systematically investigated stripping using a realistic model for the interstellar medium, but without star formation. We find that star formation does not significantly affect the rate at which stripping occurs, and only has a slight impact on the density and temperature distribution of the stripped gas, indicating that our previous (gas-only) results are unaffected. For our chosen (moderate) ram pressure strength, stripping acts to truncate star formation in the disc over a few hundred million years, and does not lead to a burst of star formation. Star formation in the bulge is slightly enhanced, but the resulting change in the bulge-to-disc ratio is insignificant. We find that stars do form in the tail, primarily from gas that is ablated from the disc and the cools and condenses in the turbulent wake. The star formation rate in the tail is low, and any contribution to the intracluster light is likely to be very small. We argue that star formation in the tail depends primarily on the pressure in the intracluster medium, rather than the ram pressure strength. Finally, we compare to observations of star formation in stripped tails, finding that many of the discrepancies between our simulation and observed wakes can be accounted for by different intracluster medium pressures.
Ram pressure
Intracluster medium
Stripping (fiber)
Cite
Citations (122)
A Population III/Population II transition from massive to normal stars is predicted to occur when the metallicity of the star-forming gas crosses the critical range Zcr= 10−5±1 Z⊙. To investigate the cosmic implications of such a process, we use numerical simulations which follow the evolution, metal enrichment and energy deposition of both Population II and Population III stars. We find that: (i) due to inefficient heavy element transport by outflows and slow 'genetic' transmission during hierarchical growth, large fluctuations around the average metallicity arise; as a result, Population III star formation continues down to z= 2.5, but at a low peak rate of 10−5 M⊙ yr−1 Mpc−3 occurring at z≈ 6 (about 10−4 of the Population II one); and (ii) Population III star formation proceeds in an 'inside–out' mode in which formation sites are progressively confined to the periphery of collapsed structures, where the low gas density and correspondingly long free-fall time-scales result in a very inefficient astration. These conclusions strongly encourage deep searches for pristine star formation sites at moderate (2 < z < 5) redshifts where metal-free stars are likely to be hidden.
Cite
Citations (185)
Abstract Galaxies undergoing ram pressure stripping in clusters are an excellent opportunity to study the effects of environment on both the AGN and the star formation activity. We report here on the most recent results from the GASP survey. We discuss the AGN-ram pressure stripping connection and some evidence for AGN feedback in stripped galaxies. We then focus on the star formation activity, both in the disks and the tails of these galaxies, and conclude drawing a picture of the relation between multi-phase gas and star formation.
Star (game theory)
Cite
Citations (3)
Studies by Lada (2010) and Heiderman (2010) have suggested that star formation mostly occurs above a threshold in gas surface density Sigma of Sigma_c = 120 Msun pc^{-2} (A_K = 0.8). Heiderman infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area Sigma_SFR with increasing Sigma, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of Sigma_SFR, approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of Sigma_SFR vs. Sigma in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A=Sigma^{-3} for low-mass regions and A=Sigma^{-1} for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada similarly does not demand a particular threshold for star formation, and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse.
Sigma
Linear density
Low Mass
Star (game theory)
Stellar mass
Cite
Citations (44)
We present results from the first cosmological simulations which study the onset of primordial, metal-free (population III), cosmic star formation and the transition to the present-day, metal-rich star formation (population II-I), including molecular (H$_2$, HD, etc.) evolution, tracing the injection of metals by supernov{\ae} into the surrounding intergalactic medium and following the change in the initial stellar mass function (IMF) according to the metallicity of the corresponding stellar population. Our investigation addresses the role of a wide variety of parameters (critical metallicity for the transition, IMF slope and range, SN/pair-instability SN metal yields, star formation threshold, resolution, etc.) on the metal-enrichment history and the associated transition in the star formation mode. All simulations present common trends. Metal enrichment is very patchy, with rare, unpolluted regions surviving at all redshifts, inducing the simultaneous presence of metal-free and metal-rich star formation regimes. As a result of the rapid pollution within high-density regions due to the first SN/pair-instability SN, local metallicity is quickly boosted above the critical metallicity for the transition. The population III regime lasts for a very short period during the first stages of star formation ($\sim 10^7\,\rm yr$), and its average contribution to the total star formation rate density drops rapidly below $\sim 10^{-3}-10^{-2}$.
Initial mass function
Cite
Citations (172)
We demonstrate that the high pressure of the hot intracluster medium (ICM) can trigger the collapse of molecular clouds in a spiral galaxy, leading to a burst of star formation in the clouds. Our hydrodynamical simulations show that the high gaseous (ram pressure and static thermal) pressure of the ICM strongly compresses a self-gravitating gas cloud within a short timescale (~107 yr), dramatically increasing the central gas density and consequently causing efficient star formation within the cloud. The stars developed in the cloud form a compact, gravitationally bound star cluster. The star formation efficiency within such a cloud is found to depend on the temperature and the density of the ICM and the relative velocity of the galaxy with respect to it. Based on these results, we discuss the origin of starburst/post-starburst populations observed in distant clusters, the enhancement of star formation for galaxies in merging clusters, and the isolated compact H II regions recently discovered in the Virgo Cluster.
Intracluster medium
Virgo Cluster
Ram pressure
Cite
Citations (132)
Observations of molecular clouds in metal-poor environments typically find that they have much higher star formation rates than one would expect based on their observed CO luminosities and the molecular gas masses that are inferred from them. This finding can be understood if one assumes that the conversion factor between CO luminosity and H2 mass is much larger in these low-metallicity systems than in nearby molecular clouds. However, it is unclear whether this is the only factor at work, or whether the star formation rate of the clouds is directly sensitive to the metallicity of the gas. To investigate this, we have performed numerical simulations of the coupled dynamical, chemical and thermal evolution of model clouds with metallicities ranging from 0.01 to 1 Z⊙. We find that the star formation rate in our model clouds has little sensitivity to the metallicity. Reducing the metallicity of the gas by two orders of magnitude delays the onset of star formation in the clouds by no more than a cloud free-fall time and reduces the time-averaged star formation rate by at most a factor of 2. On the other hand, the chemical state of the clouds is highly sensitive to the metallicity, and at the lowest metallicities, the clouds are completely dominated by atomic gas. Our results not only confirm that the CO-to-H2 conversion factor in these systems depends strongly on the metallicity, but also show that the precise value is highly time-dependent, as the integrated CO luminosity of the most metal poor clouds is dominated by emission from short-lived gravitationally collapsing regions. Finally, we find evidence that the star formation rate per unit H2 mass increases with decreasing metallicity, owing to the much smaller H2 fractions present in our low-metallicity clouds.
Cite
Citations (90)
Galaxy Evolution Explorer observations of IC 3418, a low surface brightness galaxy in the Virgo Cluster, revealed a striking 17 kpc UV tail of bright knots and diffuse emission. Hα imaging confirms that star formation is ongoing in the tail. IC 3418 was likely recently ram pressure stripped on its first pass through Virgo. We suggest that star formation is occurring in molecular clouds that formed in IC 3418's turbulent stripped wake. Tides and ram pressure stripping (RPS) of molecular clouds are both disfavored as tail formation mechanisms. The tail is similar to the few other observed star-forming tails, all of which likely formed during RPS. The tails' morphologies reflect the forces present during their formation and can be used to test for dynamical coupling between molecular and diffuse gas, thereby probing the origin of the star-forming molecular gas.
Ram pressure
Virgo Cluster
Cite
Citations (55)