ComDock: A novel approach for protein-protein docking with an efficient fusing strategy
5
Citation
69
Reference
10
Related Paper
Citation Trend
Keywords:
Template
Docking (animal)
Threading (protein sequence)
Protein superfamily
Protein–ligand docking
CASP
Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.
CASP
Threading (protein sequence)
Protein structure database
Sequence (biology)
Protein sequencing
Similarity (geometry)
Protein function prediction
Structural Biology
Template
Structural bioinformatics
Cite
Citations (70)
CASP
Threading (protein sequence)
Scope (computer science)
Cite
Citations (4)
CASP
Threading (protein sequence)
Cite
Citations (52)
SummaryThis chapter presents a broad and a historical overview of the problem of protein structure prediction. Different structure prediction methods, including homology modeling, fold recognition (FR)/protein threading, ab initio/de novo approaches, and hybrid techniques involving multiple types of approaches, are introduced in a historical context. The progress of the field as a whole, especially in the threading/FR area, as reflected by the CASP/CAFASP contests, is reviewed. At the end of the chapter, we discuss the challenging issues ahead in the field of protein structure prediction.
CASP
Threading (protein sequence)
Cite
Citations (29)
Determination of the protein structure and understanding its function is essential for any relevant medical, engineering, or pharmaceutical applications. Therefore, the study of quaternary structure of proteins, despite all the obstacles in acquiring data from large macromolecular assemblies, is one of the major goals in biomolecular sciences. This chapter discusses respectively protein structure prediction, template-based predictions, critical assessment of protein structure prediction (CASP), and quaternary structure prediction. Homology modeling and threading methods are two types of template-based approaches. The homology modeling method needs to have the homologous protein structure as template and threading methods are a new approach in fold recognition, in which the tool attempts to fit the sequence in the known structures. A few sequence-based computational methods have been developed for the prediction of protein quaternary structure using statistical models or machine learning methods.
Threading (protein sequence)
CASP
Protein quaternary structure
Loop modeling
Protein function prediction
Homology
Cite
Citations (2)
The recently developed TASSER (Threading/ASSembly/Refinement) method is applied to predict the tertiary structures of all CASP6 targets. TASSER is a hierarchical approach that consists of template identification by the threading program PROSPECTOR_3, followed by tertiary structure assembly via rearranging continuous template fragments. Assembly occurs using parallel hyperbolic Monte Carlo sampling under the guide of an optimized, reduced force field that includes knowledge-based statistical potentials and spatial restraints extracted from threading alignments. Models are automatically selected from the Monte Carlo trajectories in the low-temperature replicas using the clustering program SPICKER. For all 90 CASP targets/domains, PROSPECTOR_3 generates initial alignments with an average root-mean-square deviation (RMSD) to native of 8.4 Å with 79% coverage. After TASSER reassembly, the average RMSD decreases to 5.4 Å over the same aligned residues; the overall cumulative TM-score increases from 39.44 to 52.53. Despite significant improvements over the PROSPECTOR_3 template alignment observed in all target categories, the overall quality of the final models is essentially dictated by the quality of threading templates: The average TM-scores of TASSER models in the three categories are, respectively, 0.79 [comparative modeling (CM), 43 targets/domains], 0.47 [fold recognition (FR), 37 targets/domains], and 0.30 [new fold (NF), 10 targets/domains]. This highlights the need to develop novel (or improved) approaches to identify very distant targets as well as better NF algorithms. Proteins 2005;Suppl 7:91–98. © 2005 Wiley-Liss, Inc.
Threading (protein sequence)
CASP
Template
Protein tertiary structure
Cite
Citations (185)
Knowledge of protein structures is essential to understand proteins' functions, evolution, dynamics, stabilities, and interactions and for data-driven protein- or drug design. Yet, experimental structure determination rates are far exceeded by that of next-generation sequencing, resulting in less than 1/1000th of proteins having an experimentally known 3D structure. Computational structure prediction seeks to alleviate this problem, and the Critical Assessment of Protein Structure Prediction (CASP) has shown the value of consensus and meta-methods that utilize complementary algorithms. However, traditionally, such methods employ majority voting during template selection and model averaging during refinement, which can drive the model away from the native fold if it is underrepresented in the ensemble. Here, we present TopModel, a fully automated meta-method for protein structure prediction. In contrast to traditional consensus and meta-methods, TopModel uses top-down consensus and deep neural networks to select templates and identify and correct wrongly modeled regions. TopModel combines a broad range of state-of-the-art methods for threading, alignment, and model quality estimation and provides a versatile workflow and toolbox for template-based structure prediction. TopModel shows a superior template selection, alignment accuracy, and model quality for template-based structure prediction on the CASP10-12 datasets compared to 12 state-of-the-art stand-alone primary predictors. TopModel was validated by prospective predictions of the nisin resistance protein (NSR) protein from Streptococcus agalactiae and LipoP from Clostridium difficile, showing far better agreement with experimental data than any of its constituent primary predictors. These results, in general, demonstrate the utility of TopModel for protein structure prediction and, in particular, show how combining computational structure prediction with sparse or low-resolution experimental data can improve the final model.
CASP
Threading (protein sequence)
Template
Cite
Citations (43)
Abstract The state of the art of the field of protein structure prediction is reviewed. The strengths and weaknesses of the three general approaches, comparative modelling, threading and template‐free modelling, are discussed, and an overview of the results of the critical assessment of structure prediction (CASP) protein structure prediction experiments are summarized. The implications for protein structure prediction of the finding that the library of solved single domain protein structures is likely complete are examined. Recent advances in the modelling of membrane proteins and proteome scale protein structure predictions are presented. Finally, the key remaining unsolved proteins in protein structure prediction are described.
CASP
Threading (protein sequence)
Cite
Citations (8)
We report the structure prediction results of a new composite pipeline for template-based modeling (TBM) in the 11th CASP experiment. Starting from multiple structure templates identified by LOMETS based meta-threading programs, the QUARK ab initio folding program is extended to generate initial full-length models under strong constraints from template alignments. The final atomic models are then constructed by I-TASSER based fragment reassembly simulations, followed by the fragment-guided molecular dynamic simulation and the MQAP-based model selection. It was found that the inclusion of QUARK-TBM simulations as an intermediate modeling step could help improve the quality of the I-TASSER models for both Easy and Hard TBM targets. Overall, the average TM-score of the first I-TASSER model is 12% higher than that of the best LOMETS templates, with the RMSD in the same threading-aligned regions reduced from 5.8 to 4.7 Å. Nevertheless, there are nearly 18% of TBM domains with the templates deteriorated by the structure assembly pipeline, which may be attributed to the errors of secondary structure and domain orientation predictions that propagate through and degrade the procedures of template identification and final model selections. To examine the record of progress, we made a retrospective report of the I-TASSER pipeline in the last five CASP experiments (CASP7-11). The data show no clear progress of the LOMETS threading programs over PSI-BLAST; but obvious progress on structural improvement relative to threading templates was witnessed in recent CASP experiments, which is probably attributed to the integration of the extended ab initio folding simulation with the threading assembly pipeline and the introduction of atomic-level structure refinements following the reduced modeling simulations. Proteins 2016; 84(Suppl 1):233-246. © 2015 Wiley Periodicals, Inc.
CASP
Threading (protein sequence)
Template
Fragment (logic)
Folding (DSP implementation)
Cite
Citations (54)
THESEUS, the ZIB threading environment, is a parallel implementation of a protein threading based on a multi-queued branch-and-bound optimal search algorithm to find the best sequence-to-structure alignment through a library of template structures. THESEUS uses a template core model based on secondary structure definition and a scoring function based on knowledge-based potentials reflecting pairwise interactions and the chemical environment, as well as pseudo energies for homology detection, loop alignment, and secondary structure matching. The threading core is implemented in C++ as a SPMD parallization architecture using MPI for communication. The environment is designed for generic testing of different scoring functions, e.g. different secondary structure prediction terms, different scoring matrices and information derived from multiple sequence alignments. A validaton of the structure prediction results has been done on the basis of standard threading benchmark sets. THESEUS successfully participated in the 6th Critical Assessment of Techniques for Protein Structure Prediction (CASP) 2004.
CASP
Threading (protein sequence)
Benchmark (surveying)
Cite
Citations (3)