logo
    1,8-naphthalimide-triphenylamine-based red-emitting fluorescence probes for the detection of hydrazine in real water samples and applications in bioimaging in vivo
    18
    Citation
    59
    Reference
    10
    Related Paper
    Citation Trend
    In this study, a novel method for the fast, sensitive and selective detection of Cu2+ using gold nanoparticles (AuNPs) was developed and used in immunoassays. In the presence of L-cysteine, L-cysteine can bind to the surface of citrate-stabilized AuNPs through Au-S bonds. As a result, aggregation of AuNPs occurs through electrostatic interactions between the cysteine-bound AuNPs. In contrast, in the presence of Cu2+, Cu2+ can catalyze O2 oxidation of cysteine, leading to the quick formation of disulfide cystine. An increase in the concentration of Cu2+ decreased L-cysteine-induced AuNPs aggregation by decreasing the number of free cysteine thiol groups, and the solution color changed from purple to red. Therefore, the concentration of Cu2+ can be detected with the naked eye or with ultraviolet–visible spectroscopy, and the detection limits of Cu2+ were 20 nM and 10 nM, respectively. This sensitivity was approximately three orders of magnitude higher than that of traditional AuNPs-based colorimetric Cu2+ detection methods. Because of the high sensitivity of the proposed method, we further used it with a labeled antibody in colorimetric immunoassays. The detection limit of the cancer biomarker α-fetoprotein was 2 ng ml−1, which is comparable to the detection limit of the enzyme-linked immunosorbent assay method. Huang-Hao Yang and co-workers at Fuzhou University have devised an ultra-sensitive method to detect copper ions (Cu2+), whose accumulation in the body has been linked to several diseases. The researchers' method relies on gold nanoparticles, popular in colourimetric sensing because they turn a solution from red to purple on aggregation. Here, however, instead of triggering the aggregation directly, the copper ions catalyse a 'supporting reaction' – the oxidation of a monomeric amino acid (cysteine) into a dimeric one (cystine). Only cysteine triggers the aggregation of the nanoparticles, which means the presence or absence of copper results in a red or purple solution, respectively. The method's sensitivity is very high because only catalytic quantities of copper are needed. The researchers further used this rapid, convenient, sensitive method in an immunoassay for a human protein. A novel method based on the AuNPs for fast, sensitive and selective detection of Cu2+ was developed and applied in immunoassays.
    Naked eye
    Thiol
    Citations (66)
    We present a comparative study of the spectroscopic properties of the donor–acceptor–donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitrile-triphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state.
    Triphenylamine
    Acceptor
    Citations (11)
    The photophysical processes of 4-formacyl-triphenylamine (FTA) and 4,4'-bisformacyl-triphenyl-amine (BTA) have been studied. The fluorescences of FTA and BTA with donor (triamine) and acceptor (formacyl) moieties show the twisted intramolecular charge transfer (TICT) emission in polar solvents and photoinduced charge transfer (ICT) emission in nonpolar solvents. These could be supported by the solvent effect, temperature effect and the quenching process by strong electron-deficient compounds.
    Triphenylamine
    Acceptor
    Citations (0)
    1,2,2,4-Tetramethyldihydroquinoline (TMDQ) is formylated at the 6-position and the resulting quinoline aldehyde is condensed with 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one to obtain a merocyanine 6-pyrazolinyl TMDQ.
    Hydrazine (antidepressant)
    Naked eye
    Merocyanine
    Aqueous medium
    Aqueous humour
    Citations (27)
    Two novel triphenylamine-based thiophene derivative monomers, 4-cyano-4′,4″-di(4-methoxythiophen-2-yl)triphenylamine and 4-methoxy-4′,4″-di(4-methoxythiophen-2-yl)triphenylamine, were successfully synthesized. The corresponding polymers including poly (4-cyano-4′,4″-di(4-methoxythiophen-2-yl)triphenylamine) and poly (4-methoxy-4′,4″-di(4-methoxythiophen-2-yl)triphenylamine) were electrochemically synthesized and characterized by multiple test method. The electrochemical measurements and spectroelectrochemical analyses revealed that both of the two polymers had quasi-reversible redox behavior and multi-electrochromic properties. The two polymer films showed reversible electrochemical oxidation, excellent optical contrasts in NIR region (62% at 1070 nm for the first polymer, and 86% at 1255 nm for the second polymer), satisfactory coloration efficiencies and fast switching times. The research on the application of the as prepared polymer in the fabrication of electrochromic device was also conducted, employing PCMTPA or PMMTPA as the anodically coloring materials.
    Triphenylamine
    Citations (10)
    Abstract Striking colorimetric probe (CynH) for abrupt detection of hydrazine under complete aqueous solution was achieved. The water soluble probe was designed with electron “push-pull” strategy by coupling of 4-hydroxy benzaldehyde and 2, 3, 3-trimethylindolinine. The positively charged N-propylated indolinine make the probe completely soluble in water. The probe yields eye catching selective detection of hydrazine over other competing analytes with high sensitivity. Obvious colour change was observed from colourless to appearance of bright pink colour with hydrazine. It reacts quickly with hydrazine within 2 minutes and makes the probe an effective candidate for practical application. The real time application was demonstrated using paper strip to detect hydrazine vapour. This probe is superior to earlier reported probes because of its effective sensing of hydrazine displayed with various applications including real-time strip based sensing, spray test and soil analysis. In all the examinations, the probe yields distinct response with rapid naked eye colour change this overcomes the drawbacks of previous reports.
    Hydrazine (antidepressant)
    Naked eye
    Benzaldehyde
    A simple, rapid, and convenient colorimetric chemosensor of a specific target toward the end user is still required for on-site detection and real-time monitoring applications. In this study, we developed a rapid in situ colorimetric assay for cobalt detection using the naked eye. Interestingly, a yellow to light orange visual color transition was observed within 3 s when a Chrysoidine G (CG) chemosensor was exposed to cobalt. Surprisingly, the CG chemosensor had great selectivity toward cobalt without any interference of other metal ions. Under optimized conditions, a lower detection limit of 0.1 ppm via a spectrophotometer and a visual detection limit of 2 ppm with a linear range from 0.4 to 1 ppm (R² = 0.97) were determined. Moreover, the CG chemosensor is reversible and maintains its functionality after treatment with chelating agents. In conclusion, we show the superior capabilities of the CG chemosensor, which has the potential to provide extremely facile handling, high sensitivity, and a fast response time for applications of on-site detection to real-time cobalt monitoring for the general public.
    Naked eye
    Linear range
    Citations (25)
    Hydrazine is an important industrial chemical but also very toxic. Thus rapid detection of hydrazine is very important. We have judiciously designed and constructed a novel ICT-based ratiometric "naked eye" and fluorescence smart probe, carbazole based malononitrile (CBM), that rapidly (<1 min) and selectively detects hydrazine in the presence of different metal ions, anions and other amines in aqueous medium. As a possible application of the probe, hydrazine sensing in tap water was tested. The probe also shows an excellent performance in the "dip stick" method.
    Hydrazine (antidepressant)
    Naked eye
    Carbazole
    Citations (57)