logo
    Long wavelength-sensing cones of zebrafish retina exhibit multiple layers of transcriptional heterogeneity
    2
    Citation
    62
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Introduction Understanding how photoreceptor genes are regulated is important for investigating retinal development and disease. While much is known about gene regulation in cones, the mechanism by which tandemly-replicated opsins, such as human long wavelength-sensitive and middle wavelength-sensitive opsins, are differentially regulated remains elusive. In this study, we aimed to further our understanding of transcriptional heterogeneity in cones that express tandemly-replicated opsins and the regulation of such differential expression using zebrafish, which express the tandemly-replicated opsins lws1 and lws2 . Methods We performed bulk and single cell RNA-Seq of LWS1 and LWS2 cones, evaluated expression patterns of selected genes of interest using multiplex fluorescence in situ hybridization, and used exogenous thyroid hormone (TH) treatments to test selected genes for potential control by thyroid hormone: a potent, endogenous regulator of lws1 and lws2 expression. Results Our studies indicate that additional transcriptional differences beyond opsin expression exist between LWS1 and LWS2 cones. Bulk RNA-Seq results showed 95 transcripts enriched in LWS1 cones and 186 transcripts enriched in LWS2 cones (FC > 2, FDR < 0.05). In situ hybridization results also reveal underlying heterogeneity within the lws1 - and lws2 -expressing populations. This heterogeneity is evident in cones of mature zebrafish, and further heterogeneity is revealed in transcriptional responses to TH treatments. Discussion We found some evidence of coordinate regulation of lws opsins and other genes by exogenous TH in LWS1 vs. LWS2 cones, as well as evidence of gene regulation not mediated by TH. The transcriptional differences between LWS1 and LWS2 cones are likely controlled by multiple signals, including TH.
    Keywords:
    Opsin
    Transcription is the first step in the course of decoding the structural information of proteins in the genome into functional products. Transcriptional regulation is thus a universal mode of regulatory mechanism of gene expression. Methods of studying transcriptional regulation are diverse and main procedures to measure transcriptional activity and to characterize cis- and trans-acting elements are summarized. Studies on transcriptional regulation of the genes in the airway, including those of surfactant apoproteins and of Clara cell 10 kDa protein (CC10), have revealed the presence of trans-acting elements, which are the transcription factors found in other organ such as the liver and thyroid gland, suggesting a common regulatory mechanism for cell-type specific transcription in some organs and tissues. Such studies have also provided possible means to transfer genes, in a cell-type specific manner, for therapeutic purposes.
    Transcription
    Citations (0)
    Gene transcription is regulated with distinct sets of regulatory factors at multiple levels. Transcriptional and post-transcriptional regulation constitute two major regulation modes of gene expression to either activate or repress the initiation of transcription and thereby control the number of proteins synthesized during translation. Disruptions of the proper regulation patterns at transcriptional and post-transcriptional levels are increasingly recognized as causes of human diseases. Consequently, identifying the differential gene expression at transcriptional and post-transcriptional levels respectively is vital to identify potential disease-associated and/or causal genes and understand their roles in the disease development. Here, we proposed a novel method with a linear mixed model that can identify a set of differentially expressed genes at transcriptional and post-transcriptional levels. The simulation and real data analysis showed our method could provide an accurate way to identify genes subject to aberrant transcriptional and post-transcriptional regulation and reveal the potential causal genes that contributed to the diseases.
    Post-transcriptional regulation
    Transcription
    YY1
    Transcriptional activity
    Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.
    Yersinia
    Post-transcriptional regulation
    Citations (42)
    Transcriptional regulation by transcription factors and post-transcriptional regulation by microRNAs constitute two major modes of regulation of gene expression. While gene expression motifs incorporating solely transcriptional regulation are well investigated, the dynamics of motifs with dual strategies of regulation, i.e., both transcriptional and post-transcriptional regulation, have not been studied as extensively. In this paper, we probe the dynamics of a four-gene motif with dual strategies of regulation of gene expression. Some of the functional characteristics are compared with those of a two-gene motif, the genetic toggle, employing only transcriptional regulation. Both the motifs define positive feedback loops with the potential for bistability and hysteresis. The four-gene motif, contrary to the genetic toggle, is found to exhibit bistability even in the absence of cooperativity in the regulation of gene expression. The four-gene motif further exhibits a novel dynamical feature in which two regions of monostability with linear threshold response are separated by a region of bistability with digital response. Using the linear noise approximation, we further show that the coefficient of variation (a measure of noise), associated with the protein levels in the steady state, has a lower magnitude in the case of the four-gene motif as compared to the case of the genetic toggle. We next compare transcriptional with post-transcriptional regulation from an information theoretic perspective. We focus on two gene expression motifs, Motif 1 with transcriptional regulation and Motif 2 with post-transcriptional regulation. We show that amongst the two motifs, Motif 2 has a greater capacity for information transmission for an extended range of parameter values.
    Motif (music)
    Cooperativity
    Gene regulatory network
    Significance Cells regulate the activity of genes in a variety of ways. For example, they regulate transcription through DNA binding proteins called transcription factors, and they regulate mRNA stability and processing through RNA binding proteins. Based on current knowledge, transcriptional regulation is more widespread and is involved in many more evolutionary adaptations than posttranscriptional regulation. The reason could be that transcriptional regulation is studied more intensely. We suggest instead that transcriptional regulation harbors an intrinsic evolutionary advantage: when mutations change transcriptional regulation, they are more likely to bring forth novel patterns of such regulation. That is, transcriptional regulation is more evolvable. Our analysis suggests a reason why a specific kind of gene regulation is especially abundant in the living world.
    Post-transcriptional regulation
    Transcription
    Citations (39)
    myc family genes (c-, N-, and L-myc) have been shown to be differentially expressed with respect to tissue type and developmental stage. To define and compare the regulatory mechanisms governing their differential developmental expression, we examined the transcriptional regulation of each myc family member during murine postnatal brain and liver development. Nuclear run-on transcription assays demonstrated that both the rate of transcriptional initiation and the degree of transcriptional blocking contribute in a complex manner to the regulation of all three genes. During postnatal brain development, the relative contribution of each transcriptional control mechanism to the regulation of myc family gene expression was found to be different for each gene. For instance, while modulation of transcriptional attenuation did not appear to contribute to the down-regulation of L-myc expression, attenuation was found to be the dominant mechanism by which steady-state N-myc mRNA levels were down-regulated. Different transcriptional strategies were found to be employed in newborn versus adult developing liver for repression of N- and L-myc expression. Undetectable steady-state N- and L-myc mRNA levels in newborn liver were associated with a very low rate of transcriptional initiation, whereas the lack of N- and L-myc expression at the adult stage was accompanied by a high rate of initiation and a striking degree of transcriptional attenuation. Transcriptional attenuation in the N-myc gene was found to map to a region encoding a potential stem-loop structure followed by a thymine tract within the first exon and was not dependent on the use of a specific transcriptional start site.
    Post-transcriptional regulation
    Citations (23)
    myc family genes (c-, N-, and L-myc) have been shown to be differentially expressed with respect to tissue type and developmental stage. To define and compare the regulatory mechanisms governing their differential developmental expression, we examined the transcriptional regulation of each myc family member during murine postnatal brain and liver development. Nuclear run-on transcription assays demonstrated that both the rate of transcriptional initiation and the degree of transcriptional blocking contribute in a complex manner to the regulation of all three genes. During postnatal brain development, the relative contribution of each transcriptional control mechanism to the regulation of myc family gene expression was found to be different for each gene. For instance, while modulation of transcriptional attenuation did not appear to contribute to the down-regulation of L-myc expression, attenuation was found to be the dominant mechanism by which steady-state N-myc mRNA levels were down-regulated. Different transcriptional strategies were found to be employed in newborn versus adult developing liver for repression of N- and L-myc expression. Undetectable steady-state N- and L-myc mRNA levels in newborn liver were associated with a very low rate of transcriptional initiation, whereas the lack of N- and L-myc expression at the adult stage was accompanied by a high rate of initiation and a striking degree of transcriptional attenuation. Transcriptional attenuation in the N-myc gene was found to map to a region encoding a potential stem-loop structure followed by a thymine tract within the first exon and was not dependent on the use of a specific transcriptional start site.
    Post-transcriptional regulation
    Abstract Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
    Transcription
    Post-transcriptional regulation
    Citations (52)
    One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically 'coregulated' genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes.