logo
    Galactic coronae in Milky Way-like galaxies: the role of stellar feedback in gas accretion
    0
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    Star-forming galaxies like the Milky Way are surrounded by a hot gaseous halo at the virial temperature - the so-called galactic corona - that plays a fundamental role in their evolution. The interaction between the disc and the corona has been shown to have a direct impact on accretion of coronal gas onto the disc with major implications for galaxy evolution. In this work, we study the gas circulation between the disc and the corona of star-forming galaxies like the Milky Way. We use high-resolution hydrodynamical N-body simulations of a Milky Way-like galaxy with the inclusion of an observationally-motivated galactic corona. In doing so, we use SMUGGLE, an explicit interstellar medium (ISM) and stellar feedback model coupled with the moving-mesh code Arepo. We find that the reservoir of gas in the galactic corona is sustaining star formation: the gas accreted from the corona is the primary fuel for the formation of new stars, helping in maintaining a nearly constant level of cold gas mass in the galactic disc. Stellar feedback generates a gas circulation between the disc and the corona (the so-called galactic fountain) by ejecting different gas phases that are eventually re-accreted onto the disc. The accretion of coronal gas is promoted by its mixing with the galactic fountains at the disc-corona interface, causing the formation of intermediate temperature gas that enhance the cooling of the hot corona. We find that this process acts as a positive feedback mechanism, increasing the accretion rate of coronal gas onto the galaxy.
    Keywords:
    Galactic corona
    Corona (planetary geology)
    Submitted to: Nature Abstract: The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^6 solar masses.
    Galactic corona
    Galactic plane
    Galactic tide
    Thick disk
    Citations (0)
    Aims.Sloan Digital Sky Survey (SDSS) DR5 photometric data with , were searched for new Milky Way companions or substructures in the Galactic halo.
    Galactic corona
    Galactic tide
    Galactic astronomy
    Citations (22)
    Abstract In order to study the Milky Way, RR Lyrae (RRL) variable stars identified by Gaia, ASAS-SN, and ZTF sky survey projects have been analyzed as tracers in this work. Photometric and spectroscopic information of 3417 RRLs including proper motions, radial velocity, and metallcity are obtained from observational data of Gaia, LAMOST, GALAH, APOGEE, and RAVE. Precise distances of RRLs with typical uncertainties less than 3% are derived by using a recent comprehensive period–luminosity–metallicity relation. Our results from kinematical and chemical analysis provide important clues for the assembly history of the Milky Way, especially for the Gaia–Sausage ancient merger. The kinematical and chemical trends found in this work are consistent with those of recent simulations that indicated that the Gaia–Sausage merger had a dual origin in the Galactic thick disk and halo. As recent similar works have found, the halo RRL sample in this work contains a subset of radially biased orbits besides a more isotropic component. This higher orbital anisotropy component amounts to β ≃ 0.8, and it contributes between 42% and 83% of the halo RRLs at 4 < R ( kpc) < 20.
    RR Lyrae variable
    LAMOST
    Variable star
    Horizontal branch
    Citations (6)
    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions and superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.
    Galactic corona
    Galactic tide
    Citations (0)
    The characteristics of the missing-mass objects (MMOs) of the Galaxy are investigated theoretically, evaluating candidate MMOs for both the Oort missing mass (concentrated toward the Galactic disk) and the halo missing mass on the basis of observational data. It is argued that MMOs of less than 10 to the 22nd g make up no more than 0.001 percent of the Oort missing mass and no more than 0.00001 percent of the halo missing mass.
    Galactic corona
    Galactic tide
    Citations (24)