logo
    Comparison of Aggregated Exposure to Perfluorooctanoic Acid (PFOA) From Diet and Personal Care Products with Concentrations in Blood Using a PBPK Model – Results from the Norwegian Biomonitoring Study in EuroMix
    1
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Background: Per- and polyfluoroalkyl substances (PFASs) constitute a large group of compounds that are water, stain, and oil repellent. Numerous sources contribute to the blood levels of PFASs in the European population. The main contributor for perfluorooctanoic acid (PFOA) is food/drinking water, house dust, consumer products and personal care products (PCPs).Objectives: The purpose of the present work is to calculate the dietary and dermal external exposure to PFOA, estimate the aggregated internal exposure from diet and PCPs using a PBPK model, and compare estimates with measured concentrations.Methods: Detailed information on diet and PCP use from the EuroMix study is combined with concentration data of PFOA in food, drinking water and PCPs in a probabilistic exposure assessment. A physiologically based pharmacokinetic model (PBPK) was further refined by incorporating a dermal exposure pathway, and changes in the kidney and faecal excretion.Results: The aggregated internal exposure using the PBPK model shows that the major contributor to the internal exposure is diet for both males and females. The estimated internal exposure of PFOA for the EuroMix population was in the same range but lower than the measured blood concentrations using the lower bound (LB) external exposure estimates, showing that the LB estimates are underestimations. For seven females the internal exposure of PFOA were higher from PCPs than from diet.Conclusion: PCPs and diet contributed in the same range to the internal PFOA exposure for several women participating in EuroMix. This calls for additional studies on exposure to PFOA and possibly other PFASs from PCPs, especially for women. Overall, PBPK modelling was shown as valuable tool in understanding the sources of PFOA exposure and in guiding risk assessments and regulatory decisions.
    Keywords:
    Perfluorooctanoic acid
    Norwegian
    The widespread use of Perfluorooctane sulfonate (PFOS) in everyday life, its long half-life, and the lipophilicity that makes it easily accumulate in the body, raises the question of its safe exposure among different population groups. There are currently enough epidemiological studies showing evidence of PFOS exposure and its associated adverse effects on humans. Moreover, it is already known that physiological changes along with age e.g. organ volume, renal blood flow, cardiac output and albumin concentrations affect chemicals body burden. Human biomonitoring cohort studies have reported PFOS concentrations in blood and autopsy tissue data with PFOS present in sensitive organs across all human lifespan. However, to interpret such biomonitoring data in the context of chemical risk assessment, it is necessary to have a mechanistic framework that explains show the physiological changes across age affects the concentration of chemical inside different tissues of the human body. PBPK model is widely and successfully used in the field of risk assessment. The objective of this manuscript is to develop a dynamic age-dependent PBPK model as an extension of the previously published adult PFOS model and utilize this model to predict and compare the PFOS tissue distribution and plasma concentration across different age groups. Different cohort study data were used for exposure dose reconstruction and evaluation of time-dependent concentration in sensitive organs. Predicted plasma concentration followed trends observed in biomonitoring data and model predictions showed the increased disposition of PFOS in the geriatric population. PFOS model is sensitive to parameters governing renal resorption and elimination across all ages, which is related to PFOS half-life in humans. This model provides an effective framework for improving the quantitative risk assessment of PFOS throughout the human lifetime, particularly in susceptible age groups. The dynamic age-dependent PBPK model provides a step forward for developing such kind of dynamic model for other perfluoroalkyl substances.
    Perfluorooctane
    Perfluorooctanoic acid
    The suitability of wild boar liver as a bioindicator of per- and polyfluoroalkyl substances (PFAS) in the terrestrial environment was investigated. Samples from 50 animals in three different areas associated with (1) contaminated paper sludges distributed on arable land (PS), (2) industrial emissions of PFAS (IE) and (3) background contamination (BC) were analyzed for 66 PFAS, including legacy PFAS, novel substitutes and precursors of perfluoroalkyl acids (PFAAs). Additionally, the Total Oxidizable Precursor (TOP) assay was performed to determine the formation potential of PFAAs from precursors. In total, 31 PFAS were detected with site-specific contamination profiles. PFAS concentrations in livers from area PS and IE (567 and 944 μg kg-1 wet weight, respectively) were multiple times higher than from area BC (120 μg kg-1). The dominating PFAS were the legacy compounds perfluorooctane sulfonic acid (PFOS) in areas PS and BC (426 and 82 μg kg-1, respectively) and perfluorooctanoic acid (PFOA) in area IE (650 μg kg-1). In area IE, the compounds 4,8-dioxa-3H-perfluorononanoic acid (DONA) and hexafluoropropylene oxide dimer acid (HFPO-DA) - which are used as substitutes for PFOA - were determined at 15 and 0.29 μg kg-1, respectively. The formation potential of PFAAs was highest in area PS, but generally lower than the contamination with PFAAs. The pattern of perfluoroalkyl carboxylic acids (PFCAs) in wild boar liver reflects the contamination of the local soil at the two hot-spot areas IE and PS. This first comparison of PFAS contamination between wild boars and soil suggests that wild boar livers are suitable bioindicators for PFAS contamination in the terrestrial environment. Moreover, in terrestrial samples from area IE, legacy PFAS were found to be retained for a longer period as compared to riverine samples (suspended particulate matter and chub filet).
    Perfluorooctanoic acid
    Perfluorooctane
    In this biomonitoring study, we evaluated the concentrations of 8 polychlorinated biphenyls (PCBs), 11 organochlorinated pesticides (OCPs), 33 brominated flame retardants (BFRs), 7 novel brominated and chlorinated flame retardants (novel FRs) and 30 per- and polyfluoroalkylated substances (PFAS) in human serum samples (n = 274). A total of 89 persistent organic pollutants (POPs) were measured in blood serum samples of city policemen living in three large cities and their adjacent areas (Ostrava, Prague, and Ceske Budejovice) in the Czech Republic. All samples were collected during the year 2019 in two sampling periods (spring and autumn). The identification/quantification of PCBs, OCPs, BFRs, novel FRs and PFAS was performed by means of gas chromatography coupled to (tandem) mass spectrometry (GC-MS/(MS)) and ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). The most frequently detected pollutants were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), 2,2',3,4,4',5'-hexachlorobiphenyl (CB 138), 2,2',4,4',5,5'-hexachlorobiphenyl (CB 153), 2,2',3,3',4,4',5-heptachlorobiphenyl (CB 170), 2,2',3,4,4',5,5'-heptachlorobiphenyl (CB 180), hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) quantified in 100% of serum samples. In the serum samples, the concentrations of determined POPs were in the range of 0.108-900 ng g-1 lipid weight (lw) for PCBs, 0.106-1016 ng g-1 lw for OCPs, <0.1-618 ng g-1 lw for FRs and <0.01-18.3 ng mL-1 for PFAS, respectively. Locality, sampling season, and age were significantly associated with several POP concentrations. One of the important conclusions was that within the spring sampling period, statistically significant higher concentrations of CB 170 and CB 180 were observed in the samples from Ostrava (industrial area) compared to Prague and Ceske Budejovice. Older policemen had higher concentrations of five PCBs and two OCPs in blood serum.
    Perfluorooctanoic acid
    Hexachlorobenzene
    Perfluorooctane
    Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life (t1/2) in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its t1/2. Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent t1/2 of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3–3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.
    Perfluorooctanoic acid
    Disposition
    Citations (7)
    An existing physiologically based pharmacokinetic model for Di-(2-propylheptyl) phthalate (DPHP) was refined to improve the simulations of the venous blood concentrations of the primary monoester metabolite, mono-(2-propylheptyl) phthalate (MPHP). This was considered a significant deficiency that should be addressed because the primary metabolite of other high molecular weight phthalates has been associated with toxicity. The various processes that influence the concentration of DPHP and MPHP in blood were re-evaluated and modified. A few simplifications of the existing model were made, including the removal of enterohepatic recirculation (EHR) of MPHP. However, the primary development was describing the partial binding of MPHP to plasma proteins following uptake of DPHP and metabolism in the gut affording better simulation of the trends observed in the biological monitoring data. Secondly, the relationship between blood concentrations and the urinary excretion of secondary metabolites was explored further because the availability of two data streams provides a better understanding of the kinetics than reliance on just one. Most human studies are conducted with few volunteers and generally with the absence of blood metabolite measurements which would likely imply an incomplete understanding of the kinetics. This has important implications for the "read across" approach proposed as part of the development of New Approach Methods for the replacement of animals in chemical safety assessments. This is where the endpoint of a target chemical is predicted by using data for the same endpoint from another more "data rich" source chemical. Validation of a model parameterized entirely with in vitro and in silico derived parameters and calibrated against several data streams would constitute a data rich source chemical and afford more confidence for future evaluations of other similar chemicals using the read-across approach.
    Prenatal exposures to perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been associated with child health outcomes, but many of these associations remain poorly characterized. The aim of this work was to provide new indicators of foetal exposure for the Spanish INMA birth cohort. First, a pregnancy and lactation physiologically based pharmacokinetic (PBPK) model was calibrated in a population framework to provide quantitative estimates for the PFOA and PFOS placental transfers in humans. The estimated distributions indicated that PFOA crosses the placental barrier at a rate three times higher than PFOS and shows a higher variability between mothers. The PBPK model was then used to back-calculate the time-varying daily intakes of the INMA mothers corrected for their individual history from a spot maternal concentration. We showed the importance of accounting for the mothers' history as different dietary intakes can result in similar measured concentrations at one time point. Finally, the foetal exposure was simulated in target organs over pregnancy using the PBPK model and the estimated maternal intakes. We showed that the pattern of PFOA and PFOS exposures varies greatly among the foetuses. About a third has levels of either one compound always higher than the levels of the other compound. The other two thirds showed different ranking of PFOA and PFOS in terms of concentrations in the target organs. Our simulated foetal exposures bring additional information to the measured maternal spot concentrations and can help to better characterize the prenatal exposure in target organs during windows of susceptibility.
    Perfluorooctanoic acid
    Perfluorooctane
    Reference dose
    Citations (28)