logo
    An Atypical E3 Ligase Module in UBR4 Mediates Destabilization of N-degron Substrates
    1
    Citation
    71
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract UBR4 is an E3 ligase (E3) of the N-degron pathway and is involved in neurodevelopment, age-associated muscular atrophy and cancer progression. The location and mechanistic classification of the E3 module within the 600 kDa protein UBR4 remains unknown. Herein, we identify and characterize, at a biochemical and structural level, a distinct E3 module within human UBR4 consisting of a novel “hemiRING” zinc finger, a helical-rich UBR Zinc-finger Interacting (UZI) subdomain, and a predicted backside interacting N-terminal helix. A structure of an E2 conjugating enzyme (E2)-E3 complex provides atomic level insight into the exquisite specificity of the hemiRING towards the E2s UBE2A/B. The UZI subdomain can be considered a component of the E3 module as it has a modest activating effect on the ubiquitin loaded E2 (E2∼Ub), which is complemented by the intrinsically high lysine reactivity of UBE2A. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3 ligase, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains associated with ubiquitin E3 activity.
    Keywords:
    Degron
    Abstract TNFAIP8-like 2 (TIPE2) is a negative regulator of immune receptor signaling that maintains immune homeostasis. Dysregulated TIPE2 expression has been observed in several types of human immunological disorders. However, how TIPE2 expression is regulated remains to be determined. We report in this study that the SCFβ-TrCP E3 ubiquitin ligase regulates TIPE2 protein abundance by targeting it for ubiquitination and subsequent degradation via the 26S proteasome. Silencing of either cullin-1 or β-TrCP1 resulted in increased levels of TIPE2 in immune cells. TAK1 phosphorylated the Ser3 in the noncanonical degron motif of TIPE2 to trigger its interaction with β-TrCP for subsequent ubiquitination and degradation. Importantly, the amount of TIPE2 protein in immune cells determined the strength of TLR 4–induced signaling and downstream gene expression. Thus, our study has uncovered a mechanism by which SCFβ-TrCP E3 ubiquitin ligase regulates TLR responses.
    Degron
    Cullin
    Immune receptor
    Protein Degradation
    Citations (14)
    Abstract Proteolysis‐targeting chimeras (PROTACs) are novel therapeutics for the treatment of human disease. They exploit the enormous potential of the E3 ligases, a class of proteins that mark a target protein for degradation via the ubiquitin–proteasome system. Despite the existence of several E3 ligase‐related databases, the choice of the functioning ligase is limited to only 1.6% of those available, probably due to the fragmentary understanding of their structures and their known ligands; in fact, none of the existing databases report detailed studies covering their 3D structure or their pockets. Here, we report ELIOT (E3 LIgase pocketOme navigaTor), an accurate and complete platform containing the E3 ligase pocketome to enable navigation and selection of new E3 ligases and new ligands for the design of new PROTACs. All E3 ligase pockets were characterized with innovative 3D descriptors including their PROTAC‐ability score, and similarity analyses between E3 pockets are presented. Tissue specificity and their degree of involvement in patients with specific cancer types are also annotated for each E3 ligase, enabling appropriate selection for the design of a PROTAC with improved specificity. All data are available at https://eliot.moldiscovery.com .
    Ubiquitin-Protein Ligases
    Proteolysis
    Citations (11)
    The E3 ubiquitin ligase Pellino can be activated by phosphorylation in vitro, catalyzed by IL-1 receptor-associated kinase 1 (IRAK1) or IRAK4. Here, we show that phosphorylation enhances the E3 ligase activity of Pellino 1 similarly with any of several E2-conjugating enzymes (Ubc13-Uev1a, UbcH4, or UbcH5a/5b) and identify 7 amino acid residues in Pellino 1 whose phosphorylation is critical for activation. Five of these sites are clustered between residues 76 and 86 (Ser-76, Ser-78, Thr-80, Ser-82, and Thr-86) and decorate a region of antiparallel beta-sheet, termed the "wing," which is an appendage of the forkhead-associated domain that is thought to interact with IRAK1. The other 2 sites are located at Thr-288 and Ser-293, just N-terminal to the RING-like domain that carries the E3 ligase activity. Unusually, the full activation of Pellino 1 can be achieved by phosphorylating any one of several different sites (Ser-76, Thr-86, Thr-288, or Ser-293) or a combination of other sites (Ser-78, Thr-80, and Ser-82). These observations imply that dephosphorylation of multiple sites is required to inactivate Pellino 1, which could be a device for prolonging Pellino's E3 ubiquitin ligase activity in vivo.
    Ubiquitin-Protein Ligases
    Dephosphorylation
    Citations (73)
    EP300-interacting inhibitor of differentiation 1 (EID1) belongs to a protein family implicated in the control of transcription, differentiation, DNA repair, and chromosomal maintenance. EID1 has a very short half-life, especially in G0 cells. We discovered that EID1 contains a peptidic, modular degron that is necessary and sufficient for its polyubiquitylation and proteasomal degradation. We found that this degron is recognized by an Skp1, Cullin, and F-box (SCF)-containing ubiquitin ligase complex that uses the F-box Only Protein 21 (FBXO21) as its substrate recognition subunit. SCF(FBXO21) polyubiquitylates EID1 both in vitro and in vivo and is required for the efficient degradation of EID1 in both cycling and quiescent cells. The EID1 degron partially overlaps with its retinoblastoma tumor suppressor protein-binding domain and is congruent with a previously defined melanoma-associated antigen-binding motif shared by EID family members, suggesting that binding to retinoblastoma tumor suppressor and melanoma-associated antigen family proteins could affect the polyubiquitylation and turnover of EID family members in cells.
    Degron
    Ubiquitin-Protein Ligases
    F-box protein
    Cullin
    Citations (26)
    Protein ubiquitination is a posttranslational modification that plays an integral part in mediating diverse cellular functions. The process of protein ubiquitination utilizes an enzymatic cascade that consists of a ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2) and an E3 ubiquitin ligase (E3). There are an estimated 600 - 700 E3 ligase genes representing ~5% of the human genome. Not surprisingly, mutations in E3 ligase genes have been observed in multiple neurological conditions. We constructed a comprehensive atlas of disrupted E3 ligase genes in common (CND) and rare neurological diseases (RND). Of the predicted and known human E3 ligase genes, we found ~13% were mutated in a neurological disorder with 83 total genes representing 70 different types of neurological diseases. Of the E3 ligase genes identified, 51 were associated with an RND. Here, we provide an updated list of neurological disorders associated with E3 ligase gene disruption. We further highlight research in these neurological disorders and discuss the advanced technologies used to support these findings.
    Ubiquitin-Protein Ligases
    Citations (147)
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3 ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69 normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary, our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.
    Abstract The anti-cancer agent Indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which Indisulam mediates DCAF15-RBM39 interaction, we solved the DCAF15-DDB1-DDA1-Indisulam-RBM39(RRM2) complex structure to 2.3 Å. DCAF15 has a novel topology which embraces the RBM39(RRM2) domain largely via nonpolar interactions, and Indisulam binds between DCAF15 and RBM39(RRM2) and coordinates additional interactions between the two proteins. Studies with RBM39 point mutants and Indisulam analogs validated the structural model and defined the RBM39 alpha-helical degron motif. The degron is found only in RBM23 and RBM39 and only these proteins were detectably downregulated in Indisulam-treated HCT116 cells. This work further explains how Indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade novel targets.
    Degron
    Ubiquitin-Protein Ligases
    Protein Degradation
    DDB1
    Citations (3)
    Overexpression of c-myc via increased transcription or decreased protein degradation is common to many cancer etiologies. c-myc protein degradation is mediated by ubiquitin-dependent degradation, and this ubiquitylation is regulated by several E3 ligases. The primary regulator is Fbxw7, which binds to a phospho-degron within c-myc. Here, we identify a new E3 ligase for c-myc, Fbxl8 (F-box and Leucine Rich Repeat Protein 8), as an adaptor component of the SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase complex, for selective c-myc degradation. SCFFbxl8 binds and ubiquitylates c-myc, independent of phosphorylation, revealing that it regulates a pool of c-myc distinct from SCFFbxw7. Loss of Fbxl8 increases c-myc protein levels, protein stability, and cell division, while overexpression of Fbxl8 reduces c-myc protein levels. Concurrent loss of Fbxl8 and Fbxw7 triggers a robust increase in c-myc protein levels consistent with targeting distinct pools of c-myc. This work highlights new mechanisms regulating c-myc degradation.
    Skp1
    Degron
    F-box protein
    Protein Degradation
    DDB1
    Proto-Oncogene Proteins c-myc
    Ubiquitin-Protein Ligases