logo
    Research hotspots of prostate cancer at the international conferences on urology in 2022
    0
    Citation
    6
    Reference
    10
    Related Paper
    Abstract:
    The American Urological Association (AUA), European Association of Urology (EUA) and International Urological Society (SIU) annual meetings were held in 2022. Studies on prostate cancer reported in the meetings mainly focus on the advances of diagnostic biomarkers (such as α-2, 3-1inked sialylation of terminal
    Keywords:
    Prostate biopsy
    The present study aimed to evaluate the indications for a second prostate biopsy in patients suspected with prostate cancer after an initial negative prostate biopsy. The present study included 421 patients who underwent repeat prostate biopsy between January 2007 and December 2015 at three hospitals. Clinicopathological data, including patient age, body mass index, history of prostate biopsy, prostate volume, prostate-specific antigen (PSA) level, PSA density, PSA velocity, and PSA fluctuation patterns, were analyzed. The patients were stratified into two groups based on the first PSA pattern (increase/decrease) within 1 year after the initial negative prostate biopsy. Prostate cancer was detected in 100 (23.8%) of the 421 patients at the second prostate biopsy. In patients with a PSA decrease at the first follow-up, prostate volume and number of increases in the PSA level from the initial prostate biopsy were predictors for prostate cancer diagnosis at the second prostate biopsy. In patients with a steady PSA increase after the initial prostate biopsy, prostate volume and number of biopsy cores were predictors for prostate cancer diagnosis at the second prostate biopsy. The indications for a second prostate biopsy are a low prostate volume and a high number of increases in the PSA level among patients with a PSA decrease at the first follow-up and a low prostate volume and a high number of biopsy cores among patients with a PSA increase at the first follow-up.
    Prostate biopsy
    We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ.
    Prostate biopsy
    Citations (17)
    MicroRNAs (miRNAs or miR-) have been linked to factors associated with aggressive prostate cancer such as biochemical recurrence and metastasis. We investigated whether circulating miRNAs in plasma could be used as diagnostic biomarkers for more aggressive prostate cancer at prostate biopsy.Men, aged 40 years and above, newly diagnosed with prostate cancer were categorized into two risk groups, low-grade (Gleason score, 6 or 7 [3 + 4] and serum prostate-specific antigen [PSA], <20 ng/mL) and high-grade (Gleason score, ≥7 (4 + 3) and serum PSA, ≥20 ng/mL) prostate cancers. The limma R package was used to compare the expression of miRNAs in plasma between the two risk groups, adjusting for age.There were 66 men, aged 46-86 years, included: 40 men with low-grade and 26 men with high-grade prostate cancers. There were lower expressions of miR-28, miR-100, miR-942, and miR-28-3p, and higher expressions of miR-708, miR-1298, miR-886-3p, miR-374, miR-376c, miR-202, miR-128a, and miR-185 in high-grade compared to low-grade prostate cancer cases at biopsy, after adjusting for age (P < 0.05). These differences were no longer statistically significant after adjusting the P values for multiple comparisons.There was no circulating miRNA associated with high-grade prostate cancer at biopsy after adjusting for age and multiple comparisons. Nevertheless, relationships between these circulating miRNAs and high-grade prostate cancer were observed, which suggest them as promising prostate cancer biomarkers. Further investigation in a larger cohort may provide insight into their diagnostic potential for aggressive prostate cancer.
    Prostate biopsy
    Citations (32)
    The aim of our study was to compare infectious complication rates between different prostate biopsy techniques with various number of biopsy cores.In this retrospective study, all patients from 2 hospitals who underwent prostate biopsy between 2012 and 2019 were identified. Cohorts with different types of prostate biopsies were compiled within these hospitals. Primary outcome measure was any registered infectious complication within 7 days post-biopsy. Secondary outcomes were infectious complications within 30 days, hospitalization and bacteremia. To compare the risk of infection following different prostate biopsy techniques, data was fitted into a logistic regression model adjusting for potential confounders.In total, 4,233 prostate biopsies in 3,707 patients were included. After systematic transrectal ultrasound-guided prostate biopsy (TRUSPB; 12±1.4 biopsy cores), 4.0% (2,607) of all patients had infectious complications within 7 days post-biopsy. Transperineal magnetic resonance imaging (MRI)-ultrasound fusion guided prostate biopsy (16±3.7 biopsy cores) was associated with significantly lower infection rates than systematic TRUSPB (adjusted OR: 0.29 [0.09-0.73] 95% confidence interval [CI]). Transrectal targeted MRI-ultrasound fusion guided prostate biopsy (3.1±0.8 biopsy cores) and transrectal targeted in-bore MRI guided prostate biopsy (2.8±0.8 biopsy cores) also showed fewer infectious complications than systematic TRUSPB (adjusted OR: 0.41 [0.12-1.12] 95% CI and 0.68 [0.37-1.20] 95% CI, respectively).Transperineal prostate biopsy, or transrectal prostate biopsy with reduced number of biopsy cores, could lower the risk of infectious complications.
    Prostate biopsy
    Citations (23)
    To compare the accuracy of biopsy with two-dimensional (2D) transrectal ultrasonography (US) with that of biopsy with conventional three-dimensional (3D) transrectal US and biopsy with guided 3D transrectal US in the guidance of repeat prostate biopsy procedures in a prostate biopsy simulator.The institutional review board approved this retrospective study. Five residents and five experts performed repeat biopsies with a biopsy simulator that contained the transrectal US prostate images of 10 patients who had undergone biopsy. Simulated repeat biopsies were performed with 2D transrectal US, conventional 3D transrectal US, and guided 3D transrectal US (an extension of 3D transrectal US that enables active display of biopsy targets). The modalities were compared on the basis of time per biopsy and how accurately simulated repeat biopsies could be guided to specific targets. The probability for successful biopsy of a repeat target was calculated for each modality.Guided 3D transrectal US was significantly (P < .01) more accurate for simulated biopsy of repeat targets than was 2D or 3D transrectal US, with a biopsy accuracy of 0.86 mm +/- 0.47 (standard deviation), 3.68 mm +/- 2.60, and 3.60 mm +/- 2.57, respectively. Experts had a 70% probability of sampling a prior biopsy target volume of 0.5 cm(3) with 2D transrectal US; however, the probability approached 100% with guided 3D transrectal US. Biopsy accuracy was not significantly different between experts and residents for any modality; however, experts were significantly (P < .05) faster than residents with each modality.Repeat biopsy of the prostate with 2D transrectal US has limited accuracy. Compared with 2D transrectal US, the biopsy accuracy of both experts and residents improved with guided 3D transrectal US but did not improve with conventional 3D transrectal US.
    Prostate biopsy
    Transrectal ultrasonography
    Citations (17)
    To evaluate the spatial distribution of prostate cancer detected at a single positive biopsy (PBx) and a repeat PBx (rPBx).We evaluated 533 consecutive men diagnosed with prostate cancer who underwent radical prostatectomy using a clinical map document based on XML (cMDX©)-based map model of the prostate. We determined the number of cancer foci, relative tumour volume, Gleason score, zone of origin, localisation, and pathological stage after stratification according to the number of PBx sessions (PBx vs rPBx). The distribution of 3966 prostate cancer foci was analysed and visualised on heat maps. The colour gradient of the heat map was reduced to six colours representing the frequency classification of prostate cancer using an image posterisation effect. Additionally, the spatial distribution of organ-confined prostate cancer between PBx and rPBx was evaluated.Prostate cancer diagnosed on PBx was mostly localised to the apical portion and the peripheral zone of the prostate. Prostate cancer diagnosed on rPBx was more frequently found in the anterior portion and the base of the prostate. Organ-confined prostate cancer foci were mostly localised in the dorsolateral zone of the prostate in men at PBx, whereas men at rPBx had more prostate cancer foci in the anterior portion.The spatial distribution of prostate cancer with rPBx differs significantly from the spatial distribution of prostate cancer with PBx. The whole anterior portion of the prostate should be considered by rPBx.
    Citations (7)
    Objective To investigate the expressions of mitosis regulative factor STK-15 in prostate cancer and the relationship between STK-15 and the biological behavior of prostate cancer.Methods The expressions of STK-15 were examined by using immunohistochemical staining on 63 cases of prostate cancer and 16 cases of normal prostate tissues.And the expressions of STK-15 mRNA were detected by using RT-PCR in 14 cases of prostate cancer,BPH,and normal prostate tissues respectively.Results The STK15 protein was expressed in 98%(62/63) of prostate cancer tissue and in 19%(3/16) of normal prostate tissues.The difference between these expression rates was significant(P0.001).Meanwhile,the positive expression rates of STK-15 mRNA in prostate cancer,BPH,and normal prostate tissue were 93%(13/14),21%(3/14) and 14%(2/14) respectively.Compared with those in BPH and normal prostate tissue,the STK-15 mRNA expression rate in prostate cancer was significantly high(P0.001).Meanwhile,there was no significant difference between those in BPH and normal prostate tissue(P0.05).Conclusion The expressions of STK-15 increase in prostate cancer tissues which may contribute to the prostate carcinogenesis.
    Prostate Diseases
    Citations (0)