Use of next-generation sequencing in daily routine practice
0
Citation
49
Reference
10
Related Paper
Abstract:
Developments in molecular diagnosis and implementation of mutation-driven targeted therapy marked a milestone in cancer treatment. Next-generation sequencing allows sequencing of a high number of nucleotides in a short time and from a limited quantity of pathology or cytology specimens. This is a review of actual indications, utility of next-generation sequencing, and availability of targeted therapies in different neoplasms. We present the European Society for Medical Oncology Precision Medicine Working Group recommendations for tumor multigene sequencing use with the Scale for Clinical Actionability of molecular Targets ranking determined for each alteration.Keywords:
Milestone
Precision oncology
Molecular diagnostics
Molecular Pathology
Targeted Therapy
Precision oncology is a rapidly evolving concept that holds great promise in cancer treatment. However, a cancer complexity attributed to genomic and acquired tumour heterogeneity limits treatment effectiveness and increases toxicity. These limitations refer to both systemic therapies and radiotherapy, which are two mainstays of non-invasive cancer treatment. By understanding cancer heterogeneity and utilising advanced tools to personalise treatment strategies, precision oncology has the potential to revolutionise cancer care. In this article, we review the current status of precision oncology in solid tumours, specifically focusing on the impact of tumour heterogeneity and genomic patient features on systemic therapies and radiation. We also discuss the implementation of novel tools, such as next-generation sequencing and liquid biopsies, to overcome this problem.
Precision oncology
Radiation oncology
Clinical Oncology
Personalized Medicine
Cite
Citations (0)
Precision oncology
Clinical Oncology
Personalized Medicine
Profiling (computer programming)
Cite
Citations (226)
Precision oncology is a rapidly evolving concept that holds great promise in cancer treatment. However, a cancer complexity attributed to genomic and acquired tumour heterogeneity limits treatment effectiveness and increases toxicity. These limitations refer to both systemic therapies and radiotherapy, which are two mainstays of non-invasive cancer treatment. By understanding cancer heterogeneity and utilising advanced tools to personalise treatment strategies, precision oncology has the potential to revolutionise cancer care. In this article, we review the current status of precision oncology in solid tumours, specifically focusing on the impact of tumour heterogeneity and genomic patient features on systemic therapies and radiation. We also discuss the implementation of novel tools, such as next-generation sequencing and liquid biopsies, to overcome this problem.
Precision oncology
Radiation oncology
Clinical Oncology
Tumor Heterogeneity
Cancer Treatment
Personalized Medicine
Cite
Citations (0)
Precision medicine is a medical approach to administer patients with a tailored dose of treatment by taking into consideration a person’s variability in genes, environment, and lifestyles. The accumulation of omics big sequence data led to the development of various genetic databases on which clinical stratification of high-risk populations may be conducted. In addition, because cancers are generally caused by tumor-specific mutations, large-scale systematic identification of single nucleotide polymorphisms (SNPs) in various tumors has propelled significant progress of tailored treatments of tumors (i.e., precision oncology). Machine learning (ML), a subfield of artificial intelligence in which computers learn through experience, has a great potential to be used in precision oncology chiefly to help physicians make diagnostic decisions based on tumor images. A promising venue of ML in precision oncology is the integration of all available data from images to multi-omics big data for the holistic care of patients and high-risk healthy subjects. In this review, we provide a focused overview of precision oncology and ML with attention to breast cancer and glioma as well as the Bayesian networks that have the flexibility and the ability to work with incomplete information. We also introduce some state-of-the-art attempts to use and incorporate ML and genetic information in precision oncology.
Precision oncology
Omics
Radiation oncology
Cite
Citations (9)
Abstract The advent of precision medicine has changed the landscape of oncologic biomarkers, drug discovery, drug development, and, more importantly, outcomes for patients with cancer. Precision oncology entails the genomic profiling of tumors to detect actionable aberrations. The advances in clinical next‐generation sequencing from both tumor tissue and liquid biopsy and availability of targeted therapies has rapidly entered mainstream clinical practice. In this review, recent major developments in precision oncology that have affected outcomes for patients with cancer are discussed. Rapid clinical development was seen of targeted agents across various mutational profiles such as KRASG12C (which was considered “undruggable” for almost 4 decades), Exon 20 insertions, and RET mutations. Approaches to precision chemotherapy delivery by the introduction of antibody drug conjugates in the armamentarium against lung cancer has been appreciated.
Precision oncology
Clinical Oncology
Cite
Citations (2)
In recent years, precision medical detection techniques experienced a rapid transformation from low-throughput to high-throughput genomic sequencing, from multicell promiscuous detection to single-cell precision sequencing. The emergence of liquid biopsy technology has compensated for the many limitations of tissue biopsy, leading to a tremendous transformation in precision detection. Precision detection techniques contribute to monitoring disease development more closely, evaluating therapeutic effects more scientifically, and developing new targets and new drugs. In the future, the role of precision detection and the joint detection in epigenetics, rare gene detection, individualized targeted therapy, and multigene targeted drug combination therapy should be extensively explored. This article reviews the changes in precision medical detection technology in the era of precision medicine, as well as the development, clinical application, and future challenges of liquid biopsy.
Precision oncology
Liquid biopsy
Targeted Therapy
Cite
Citations (6)
Precision oncology is described as the matching of the most accurate and effective treatments with the individual cancer patient. Identification of important gene mutations, such as BRCA1/2 that drive carcinogenesis, helped pave the way for precision diagnosis in cancer. Oncoproteins and their signaling pathways have been extensively studied, leading to the development of target-based precision therapies against several types of cancers. Although many challenges exist that could hinder the success of precision oncology, cutting-edge tools for precision diagnosis and precision therapy will assist in overcoming many of these difficulties. Based on the continued rapid progression of genomic analysis, drug development, and clinical trial design, precision oncology will ultimately become the standard of care in cancer therapeutics.
Precision oncology
Identification
Drug Development
Clinical Oncology
Cite
Citations (49)
Rapidly expanding knowledge of the molecular landscape of cancers has resulted in the implementation of an increasing number of specific therapies targeted at tumors with specific molecular aberrations. In response to this development, new tools for predictive testing for molecular targets need to be implemented in routine health care. To achieve robust future molecular diagnostic pathology, and equal opportunity for patients to qualify for targeted therapy, the national working group for Solid Tumors in the initiative Genomic Medicine Sweden (GMS) aims to implement regional and national platforms for comprehensive genomic tumor profiling and linked analysis pipelines. Novel IT-infrastrucutures and recruitment of bioinformaticians and molecular biologists to hospital labotatories are paramount. The infrastructure will allow wider inclusion into clinical trials and supplement the national cancer registries with molecular »real world data« for research and evaluation of implemented cancer therapies and diagnostic procedures.
Molecular Pathology
Molecular diagnostics
Precision oncology
genomic medicine
Profiling (computer programming)
Companion diagnostic
Personalized Medicine
Targeted Therapy
Cancer Medicine
Molecular oncology
Cite
Citations (0)
Functional precision medicine is a strategy whereby live tumor cells from affected individuals are directly perturbed with drugs to provide immediately translatable, personalized information to guide therapy. The heterogeneity of human cancer has led to the realization that personalized approaches are needed to improve treatment outcomes. Precision oncology has traditionally used static features of the tumor to dictate which therapies should be used. Static features can include expression of key targets or genomic analysis of mutations to identify therapeutically targetable "drivers." Although a surprisingly small proportion of individuals derive clinical benefit from the static approach, functional precision medicine can provide additional information regarding tumor vulnerabilities. We discuss emerging technologies for functional precision medicine as well as limitations and challenges in using these assays in the clinical trials that will be necessary to determine whether functional precision medicine can improve outcomes and eventually become a standard tool in clinical oncology.
Precision oncology
Personalized Medicine
Cite
Citations (173)
Advances in molecular technologies and targeted therapeutics have accelerated the implementation of precision oncology, resulting in improved clinical outcomes in selected patients. The use of next-generation sequencing and assessments of immune and other biomarkers helps optimize patient treatment selection. In this review, selected precision oncology trials including the IMPACT, SHIVA, IMPACT2, NCI-MPACT, TAPUR, DRUP, and NCI-MATCH studies are summarized, and their challenges and opportunities are discussed. Brief summaries of the new ComboMATCH, MyeloMATCH, and iMATCH studies, which follow the example of NCI-MATCH, are also included. Despite the progress made, precision oncology is inaccessible to many patients with cancer. Some patients' tumors may not respond to these treatments, owing to the complexity of carcinogenesis, the use of ineffective therapies, or unknown mechanisms of tumor resistance to treatment. The implementation of artificial intelligence, machine learning, and bioinformatic analyses of complex multi-omic data may improve the accuracy of tumor characterization, and if used strategically with caution, may accelerate the implementation of precision medicine. Clinical trials in precision oncology continue to evolve, improving outcomes and expediting the identification of curative strategies for patients with cancer. Despite the existing challenges, significant progress has been made in the past twenty years, demonstrating the benefit of precision oncology in many patients with advanced cancer.
Precision oncology
Expediting
Clinical Oncology
Cite
Citations (35)