logo
    Intra-wound versus systemic vancomycin for preventing surgical site infection induced by methicillin-resistant S. aureus after spinal implant surgery in a rat model
    2
    Citation
    54
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Background Systemic vancomycin administration pre-operatively for the infection prophylaxis of spinal implant surgery remains unsatisfactory. This study aimed to explore the efficacy and dosage of local use of vancomycin powder (VP) in preventing surgical site infections after spinal implant surgery in a rat model. Methods Systemic vancomycin (SV; intraperitoneal injection, 88 mg/kg) or intraoperative intra-wound VP (VP0.5: 44 mg/kg, VP1.0: 88 mg/kg, VP2.0: 176 mg/kg) was applied after spinal implant surgery and methicillin-resistant S. aureus (MRSA; ATCC BAA-1026) inoculation in rats. General status, blood inflammatory biomarkers, microbiological and histopathological evaluation were performed during 2 weeks post-surgery. Results No post-surgical deaths, wound complications and obvious signs of vancomycin adverse effects were observed. Bacterial counts, blood and tissue inflammation were reduced in the VP groups compared with the SV group. VP2.0 group showed better outcomes in weight gain and tissue inflammation than the VP0.5 and VP1.0 group. Microbial counts indicated that no bacteria survived in the VP2.0 group, whereas MRSA was detected in VP0.5 and VP1.0 groups. Conclusions Intra-wound VP may be more effective than systemic administration in preventing infection caused by MRSA (ATCC BAA-1026) after spinal implant surgery in a rat model.
    Keywords:
    Surgical wound
    Spinal Surgery
    ABSTRACT Clonal replacement of predominant nosocomial methicillin-resistant Staphylococcus aureus (MRSA) strains has occurred several times in Ireland during the last 4 decades. However, little is known about sporadically occurring MRSA in Irish hospitals or in other countries. Eighty-eight representative pvl -negative sporadic MRSA isolates recovered in Irish hospitals between 2000 and 2012 were investigated. These yielded unusual pulsed-field gel electrophoresis and antibiogram-resistogram typing patterns distinct from those of the predominant nosocomial MRSA clone, ST22-MRSA-IV, during the study period. Isolates were characterized by spa typing and DNA microarray profiling for multilocus sequence type (MLST) clonal complex (CC) and/or sequence type (ST) and SCC mec type assignment, as well as for detection of virulence and antimicrobial resistance genes. Conventional PCR-based SCC mec subtyping was undertaken when necessary. Extensive diversity was detected, including 38 spa types, 13 MLST-CCs (including 18 STs among 62 isolates assigned to STs), and 25 SCC mec types (including 2 possible novel SCC mec elements and 7 possible novel SCC mec subtypes). Fifty-four MLST- spa -SCC mec type combinations were identified. Overall, 68.5% of isolates were assigned to nosocomial lineages, with ST8-t190-MRSA-IID/IIE ± SCC M1 predominating (17.4%), followed by CC779/ST779-t878-MRSA-ψSCC mec -SCC-SCC CRISPR (7.6%) and CC22/ST22-t032-MRSA-IVh (5.4%). Community-associated clones, including CC1-t127/t386/t2279-MRSA-IV, CC59-t216-MRSA-V, CC8-t008-MRSA-IVa, and CC5-t002/t242-MRSA-IV/V, and putative animal-associated clones, including CC130-t12399-MRSA-XI, ST8-t064-MRSA-IVa, ST398-t011-MRSA-IVa, and CC6-t701-MRSA-V, were also identified. In total, 53.3% and 47.8% of isolates harbored genes for resistance to two or more classes of antimicrobial agents and two or more mobile genetic element-encoded virulence-associated factors, respectively. Effective ongoing surveillance of sporadic nosocomial MRSA is warranted for early detection of emerging clones and reservoirs of virulence, resistance, and SCC mec genes.
    Citations (36)
    Pulsed-field gel electrophoretic analysis of 2,144 methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients in Spanish hospitals over a 7-year period revealed 17 predominant profiles. Typing showed the replacement of Iberian clone E1 (ST247-MRSA-I) by two prevalent clones, E7 and E8, that are closely related to each other and have the same genetic background as ST125-MRSA-IV.
    clone (Java method)
    Meticillin
    Multilocus sequence typing
    Phage typing
    Severe infections with highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are a global problem. However, the molecular events defining the evolution of CA-MRSA are still poorly understood. MRSA of sequence type (ST) 398 is known to frequently infect livestock, while ST398 isolates infecting humans are commonly methicillin-susceptible or represent MRSA originating from livestock-associated (LA)-MRSA. We used whole genome sequencing of newly detected CA-MRSA ST398 isolates, in comparison to geographically matched LA-MRSA and methicillin-sensitive ST398, to determine their evolutionary history. Furthermore, we used phenotypic analyses including animal infection models to gain insight into the evolution of virulence in these CA-MRSA isolates. Finally, we determined methicillin resistance and expression of the methicillin resistance-conferring gene mecA and its penicillin-binding protein product, PBP2a, in a large series of CA-MRSA strains of divergent STs. We report several cases of severe and fatal infections due to ST398 CA-MRSA. The responsible isolates showed the typical genetic characteristics reported for human-adapted methicillin-sensitive ST398. Whole genome sequencing demonstrated that they evolved from human-adapted, methicillin-susceptible clones on several different occasions. Importantly, the isolates had not undergone consistent genetic alterations or changes in virulence as compared to their methicillin-susceptible predecessors. Finally, we observed dramatically and consistently lower methicillin resistance and expression of the resistance gene mecA, as compared to hospital-associated MRSA strains, in a diverse selection of CA-MRSA strains. Our study presents evidence for the development of highly virulent human-adapted ST398 CA-MRSA isolates from methicillin-susceptible predecessors. Notably, our investigation indicates that, in contrast to widespread notions, the development of CA-MRSA is not necessarily associated with the acquisition of specific virulence genes or other virulence-increasing changes. Rather, our findings emphasize the importance of the CA-MRSA-characteristic staphylococcal cassette chromosome mec types, which provide only low-level methicillin resistance, for that process. Our findings are of particular importance for the diagnosis of CA-MRSA, inasmuch as they indicate that the presence of specific virulence genes cannot generally be used for that purpose.
    SCCmec
    Penicillin binding proteins
    Citations (64)
    To test whether a critical care consult team can be used to identify patients who have methicillin-resistant Staphylococcus aureus nasal colonization during a window period at which they are at highest risk for methicillin-resistant S. aureus infection and can most benefit from topical decolonization strategies.Prospective cohort study.Two adult tertiary care hospitals.Patients with at least one risk factor for methicillin-resistant S. aureus nasal colonization who were seen by a critical care consult team for potential intensive care unit admission were enrolled.Nasal cultures for methicillin-resistant S. aureus were performed on all subjects. All subjects were followed for the development of a methicillin-resistant S. aureus infection for 60 days or until hospital discharge. Demographic and outcome data were recorded on all subjects.Two hundred subjects were enrolled. Overall 29 of 200 (14.5%) were found to have methicillin-resistant S. aureus nasal colonization. Methicillin-resistant S. aureus infections occurred in seven of 29 (24.1%) subjects with methicillin-resistant S. aureus nasal colonization vs. one of 171 (0.6%) subjects without methicillin-resistant S. aureus nasal colonization (p < .001). Methicillin-resistant S. aureus clinical specimens were recovered in 15 of 29 (51.7%) subjects with methicillin-resistant S. aureus nasal colonization vs. two of 171 (1.2%) without methicillin-resistant S. aureus nasal colonization.A critical care consult team can be used to rapidly recognize patients with methicillin-resistant S. aureus nasal colonization who are at very elevated risk for methicillin-resistant S. aureus infection. The use of such a team to recognize patients who have greatest potential benefit from decolonization techniques might reduce the burden of severe methicillin-resistant S. aureus infections.
    Anterior nares
    To improve the clinical outcome of Staphylococcus aureus septicemia, the early selection of appropriate antibiotic treatment is crucial. Molecular diagnostics represents an attractive approach for the rapid identification of S. aureus and the determination of its methicillin (meticillin) resistance. In direct comparison to other molecular assays (sa442 and mecA real-time PCRs) and standard laboratory procedures, we evaluated the BD GeneOhm StaphSR assay for its use in the detection of S. aureus and methicillin-resistant S. aureus (MRSA) from spiked blood culture bottles (n = 134). In the case of detecting S. aureus (n = 90; for methicillin-susceptible S. aureus, n = 45; for MRSA, n = 45), the BD GeneOhm StaphSR assay had a sensitivity and a specificity of 100% each (95% confidence intervals [CIs], 96.0 to 100% and 82.4 to 100%, respectively). For MRSA (n = 45), the test was 95.6% (95% CI, 84.9 to 99.5%) sensitive and 95.3% (95% CI, 86.9 to 99.0%) specific. Overall, five discrepant results arose with this assay due to the presence of methicillin-susceptible, revertant MRSA strains (3/45) and MRSA strains that were not detected by the BD GeneOhm StaphSR assay (2/45). Compared to other real-time PCR-based molecular approaches and to conventional standard laboratory methods, the BD GeneOhm StaphSR turned out to be an appropriate diagnostic tool for a rapid (approximately 1.5 h), preliminary identification of S. aureus and MRSA from blood cultures.
    Meticillin
    Blood Culture
    Citations (55)
    We used an experimental rat model to compare the therapeutic efficacy of teicoplanin, linezolid, and quinupristin/dalfopristin with that of vancomycin as standard therapy for infective endocarditis.Aortic endocarditis was induced in rats by insertion of a polyethylene catheter into the left ventricle, followed by intravenous inoculation of 106 colony-forming units of methicillin-resistant Staphylococcus aureus 24 hours later. Forty-eight hours after bacterial challenge, intravenous antibiotic therapies were initiated. There were 6 groups of 8 rats each: uninfected control; infected, untreated control; vancomycin-treated (40 mg/kg twice daily); teicoplanin-treated (20 mg/kg twice daily after a loading dose of 40 mg/kg); linezolid-treated (75 mg/kg 3 times daily for 1 day, then 75 mg/kg twice daily); and quinupristin/dalfopristin-treated (30 mg/kg twice daily and an additional 10 mg/kg dalfopristin infusion over 6 to 12 hr daily). At the end of therapy, the aortic valve vegetations in the drug-treated rats were evaluated microbiologically.Compared with the infected, untreated group, all drug-treated groups had significantly reduced bacterial titers in the vegetations. Vancomycin, teicoplanin, and quinupristin/dalfopristin all effectively reduced the quantitative bacterial cultures of aortic valve vegetations. In addition, there was no significant difference in the comparative efficacy of teicoplanin, linezolid, and quinupristin/dalfopristin. Vancomycin significantly reduced bacterial counts in comparison with linezolid, which was nonetheless also effective.Our experimental model showed that each of the investigated antimicrobial agents was effective in the treatment of infective endocarditis.
    Anti-Infective Agents
    Citations (8)
    Despite extensive research on the emergence of and treatments for methicillin-resistant Staphylococcus aureus (MRSA), prior studies have not rigorously evaluated the impact of methicillin resistance on the overall incidence of S. aureus infections. Yet, there are direct clinical and research implications of determining whether methicillin-susceptible S. aureus (MSSA) infection rates remain stable in the face of increasing MRSA prevalence or whether MSSA will be replaced over time. A synthesis of prior studies indicates that the emergence of healthcare-associated MRSA (HA-MRSA) and community-associated MRSA (CA-MRSA) has led to an increase in the overall incidence of S. aureus infections, with MRSA principally adding to, rather than replacing, MSSA. However, colonization with CA-MRSA may at least partially replace colonization with MSSA. So far, evidence indicates that MSSA still accounts for many infections. Therefore, eradication of MRSA alone is not sufficient to address the public health burden of S. aureus.
    Meticillin
    Citations (66)
    ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen that has been responsible for major nosocomial epidemics worldwide. For infection control programs, rapid and adequate detection of MRSA is of great importance. We developed a rapid and high-throughput molecular screening approach that consists of an overnight selective broth enrichment, followed by mecA , mecC , and S. aureus -specific (SA442 gene) real-time PCR assays, with subsequent confirmation using a staphylococcal cassette chromosome mec element (SCC mec )- orfX -based real-time PCR assay (GeneOhm MRSA assay) and culture. Here, the results of the screening approach over a 2-year period are presented. During this period, a total of 13,387 samples were analyzed for the presence of MRSA, 2.6% of which were reported as MRSA positive. No MRSA isolates carrying the mecC gene were detected during this study. Based on the results of the real-time PCR assays only, 95.2% of the samples could be reported as negative within 24 h. Furthermore, the performance of these real-time PCR assays was evaluated using a set of 104 assorted MRSA isolates, which demonstrated high sensitivity for both the combination of mecA and mecC with SA442 and the BD GeneOhm MRSA assay (98.1% and 97.1%, respectively). This molecular screening approach proved to be an accurate method for obtaining reliable negative results within 24 h after arrival at the laboratory and contributes to improvement of infection control programs, especially in areas with a low MRSA prevalence.
    SCCmec
    Meticillin
    Citations (35)
    We report that the rates of nasal cocolonization with methicillin-susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci can vary widely between patients admitted to different wards within a single hospital. Such cocolonization can greatly influence the performance of molecular methicillin-resistant S. aureus (MRSA) screening tests depending on the methods used and targets selected.
    Coagulase
    Meticillin
    Citations (11)
    Rapid tests for detection of methicillin-resistant Staphylococcus aureus (MRSA) carriage are important to limit the transmission of MRSA in the health care setting. We evaluated the performance of the BD GeneOhm MRSA real-time PCR assay using a diverse collection of MRSA isolates, mainly from Copenhagen, Denmark, but also including international isolates, e.g., USA100-1100. Pure cultures of 349 MRSA isolates representing variants of staphylococcal cassette chromosome mec (SCCmec) types I to V and 103 different staphylococcal protein A (spa) types were tested. In addition, 53 methicillin-susceptible Staphylococcus aureus isolates were included as negative controls. Forty-four MRSA isolates were undetectable; of these, 95% harbored SCCmec type IVa, and these included the most-common clone in Copenhagen, spa t024-sequence type 8-IVa. The false-negative MRSA isolates were tested with new primers (analyte-specific reagent [ASR] BD GeneOhm MRSA assay) supplied by Becton Dickinson (BD). The ASR BD GeneOhm MRSA assay detected 42 of the 44 isolates that were false negative in the BD GeneOhm MRSA assay. Combining the BD GeneOhm MRSA assay with the ASR BD GeneOhm MRSA assay greatly improved the results, with only two MRSA isolates being false negative. The BD GeneOhm MRSA assay alone is not adequate for MRSA detection in Copenhagen, Denmark, as more than one-third of our MRSA isolates would not be detected. We recommend that the BD GeneOhm MRSA assay be evaluated against the local MRSA diversity before being established as a standard assay, and due to the constant evolution of SCCmec cassettes, a continuous global surveillance is advisable in order to update the assay as necessary.
    SCCmec
    Citations (63)