logo
    Inverse correlations between serum carotenoids and respiratory morbidity and mortality: the Third National Health and Nutrition Examination Survey
    3
    Citation
    45
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract The objective was to evaluate the association between serum carotenoid levels and respiratory morbidity and mortality in a nationally representative sample of US adults. We assessed the association of serum carotenoid levels with respiratory morbidity and mortality using logistic regression and proportional hazards regression models. Meanwhile, a series of confounders were controlled in regression models and restricted cubic spline, which included age, sex, race, marriage, education, income, drinking, smoking, regular exercise, BMI, daily energy intake, vitamin E, vitamin C, fruit intake, vegetable intake, diabetes, hypertension, asthma, emphysema and chronic bronchitis. Compared with participants in the lowest tertiles, participants in the highest tertiles of serum total carotenoids, β -cryptoxanthin and lutein/zeaxanthin levels had a significantly lower prevalence of emphysema (OR total carotenoids = 0·61, 95% CI: 0·41–0·89, OR β -cryptoxanthin = 0·67, 95% CI: 0·49–0·92), chronic bronchitis (OR β -cryptoxanthin = 0·66, 95% CI: 0·50–0·87) and asthma (Q2: OR lutein/zeaxanthin = 0·78, 95% CI: 0·62–0·97); participants in the highest tertiles of total carotenoids, α -carotene, lutein/zeaxanthin and lycopene had a lower risk of respiratory mortality (hazard ratio (HR) total carotenoids = 0·62, 95% CI: 0·42–0·90, HR α -carotene = 0·54, 95% CI: 0·36–0·82, HR lutein/zeaxanthin = 0·48, 95% CI: 0·33–0·71, HR lycopene = 0·66, 95% CI: 0·45–0·96) than those in the lowest tertiles. Higher serum total carotenoids and β -cryptoxanthin levels is associated with decreased prevalence of emphysema and chronic bronchitis, and higher serum total carotenoids, α -carotene, lutein/zeaxanthin and lycopene levels had a lower mortality of respiratory disease.
    Keywords:
    Chronic bronchitis
    THUDICHUM (1869) observed that the pigment in egg yolk was unsaponifiable and was exclusively soluble in fat solvents and gave it the name lutein. Schunk (1903) isolated the egg yolk pigment and showed by spectroscopic study that it was xanthophyll. Kuhn et al. (1931) reported, in contrast to Schunk (1903), that the pigment of the egg yolk was not a single carotenoid, but that the egg yolk contained zeaxanthin in addition to the lutein. Palmer and Kempster (1919) later demonstrated that the carotenoids which are present in egg yolks depended on the carotenoids fed. Mann (1946), and Brown (1938) have subsequently demonstrated that, in general, hens deposit in the egg yolk at least part of any carotenoids consumed. Most of the early work on avian carotenoid metabolism has been done with “total carotenoids” or “total xanthophylls,” or with crude carotenoid extracts and concentrates. However, some work has been done with…
    Yolk
    Unsaponifiable
    Citations (37)
    Background: Serum carotenoids consist of a variety of different compounds. Xanthoderma may result from an increased concentration of any of the carotenoids. Method and results: High-performance liquid chromatography of serum carotenoids shows that a normal chromatogram contains mainly β-carotene, lutein and lycopene. Serum α- and β-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin were found to be increased in the investigation of hypercarotenaemia. Conclusion: Patients presenting with possible xanthoderma should have a dietary history taken and serum sent for carotenoid analysis.
    Carotene
    Hen egg is a unique and important carrier of lipid soluble bioactive carotenoids – lutein and zeaxanthin. Egg yolk carotenoid profile is largely dependent on hen's feed composition. Naturally, lutein and zeaxanthin are polar carotenoids primarily deposited in human retina and provide several protective functions, i.e. protect the macula from damage by blue light, improve visual acuity, and scavenge harmful reactive oxygen species. They have also been linked with reduced risk of age-related macular degeneration and cataracts, cardiovascular diseases, Alzheimer's, and possibly different cancers. This review summarizes the latest data on content and composition of hen egg carotenoids, effect of processing, feeding systems, feed additives, bioavailability, and physiological effect of egg carotenoids on human health issues.
    Yolk
    천연산 및 양식산 넙치와 방어의 표피 carotenoid를 TLC, column chromatography, UV-visible spectrophotometer 및 co-TLC로 비교하여 다음과 같은 결과를 얻었다. 넙치의 총 carotenoid함량은 양식산 1.16㎎%로서 천연산 1.38㎎%보다 낮은 함량치를 보였고, carotenoid조성은 양식산이 lutein, zeaxanthin, tunaxanthin, trial 및 α-cryptoxanthin의 순으로 함유하였고, 천연산은 tunaxanthin, zeaxanthin, trial, lutein 및 α-cryptoxanthin의 순으로 함유하며, 천연산은 양식산에 비하여 tunaxanthin, trial의 함량이 높은 반면, lutein, zeaxanthin의 함량에서 훨씬 낮은 함량치를 보여 차이가 있었다. 방어의 총 carotenoid 함량은 양식산 0.09㎎%로서 천연산 1.08㎎% 보다 훨씬 낮은 함량치를 보였고, carotenoid 조성은 양식산, 천연산 모두 tunaxanthin의 획분이 총 carotenoid의 약 95%로 대부분을 차지하며, tunaxanthin은 tunaxanthin A, tunaxanthin B 및 tunaxanthin C의 세가지 혼합물로 확인되어 서로 유사하였으나, tunaxanthin A와 tunaxanthin B의 함량에서 다소의 차이를 보였다. 따라서 어류의 총 carotenoid 함량과 carotenoid의 구성성분은 어종뿐만아니라 먹이와 생육조건 등의 서식환경에 의해서도 상당한 차이가 있는것으로 나타났다.
    Citations (0)
    Among dietary carotenoids, lutein and zeaxanthin are known to protect against age-related macular degeneration, a leading cause of irreversible vision loss in the elderly. Egg yolk is rich in lutein and zeaxanthin, however, the effect of cooking and gastrointestinal digestion on yolk carotenoids is poorly understood. An in vitro dynamic gastrointestinal model (TIM-1) was used to investigate the digestive stability and bioaccessibility of carotenoids from boiled, fried, and scrambled eggs. Bioaccessibility but not digestive stability was significantly affected by the method of cooking. The main egg carotenoids, all-E-lutein and all-E-zeaxanthin, were stable during the digestion with average recoveries of 90 and 88%, respectively. No trans-cis isomerization of carotenoids was observed during digestion. Both all-E-lutein and all-E-zeaxanthin from scrambled eggs showed significantly lower bioaccessibility compared to boiled eggs. The results indicate that the bioaccessibility of egg carotenoids can be affected by different food preparation methods.
    Yolk
    Digestion
    Citations (47)
    양식 농어에 대한 사료 carotenoids의 대사와 체색개선에 미치는 영향을 검토하기 위하여 β-carotene, lutein ester, astaxanthin, astaxanthin monoester 및 astaxanthin diester의 첨가사료로서 8주간 사육하여 표피의 Carotenoid성분을 분석, 비교 검토한 결과는 다음과 같다. 농어 표피의 carotenoid색소는 tunaxanthin획분과 lutein이 주성분을 이루고 있으며, 그 외 β-carotene, α-cryptoxanthin, zeaxanthin 및 β-carotene type triol이 소량으로 존재하였다. 한편, 천연산은 양식산에 비하여 tunaxanthin과 lutein의 함유비가 높은 반면 β-carotene의 함유비가 낮은 경향을 보여 서로 차이를 보였다. Carotenoid의 축적율은 astaxanthin monoester첨가구에서 가장 높게 나타나서 채색선명화의 효과가 컸었으며, 그 다음으로 astaxanthin, astaxanthin diester첨가구의 순으로 나타났다. 사육시험후 각 시험구의 carotenoid함량과 조성으로 보아. 농어의 carotenoid대사경로는 astaxanthinol β-carotene type trios, zeaxanthin, lutein을 거쳐 tunaxanthin으로 되는 환원적대사과정을 가지는 것으로 추정할 수 있었다.
    Carotene
    Triol
    Canthaxanthin
    Citations (0)
    양식 참돔과 넙치에 대한 사료 carotenoid의 대사와 체색개선에 미치는 영향을 검토하기 위하여 β-carotene, lutein ester, astaxanthin 및 β-apo-8`-carotenal을 각각 첨가한 사료로서 8주간 사육한 결과는 다음과 같다. 1) 참돔에 있어서 carutenoid 축적율은 astaxanthin diester첨가구에서 가장 높게 나타나 체색개선 효과가 가장 컸었으며, β-apo-8`-carotenal, astaxanthin monoester첨가구의 순으로 효과가 컸었다. 2) 참돔의 carotenoid 대사경로는 astaxanthin이 tunaxanthin으로 되는 환원적 대사과정을 가지는 것으로 추정 되었다. 3) 참돔 표피의 carotenoid 색소는 astaxanthin diester, tunaxanthin 및 β-carotene이 주성분을 이루고, 천연산과 양식산은 astaxanthin diester와 β-carotene의 함량에서 서로 차이가 있었다. 4) 넙치에 있어서 carotenoid 축적율은 β-carotene첨가구에서 가장 높게 나타나 체색개선 효과가 가장 컸었으며, 그 다음으로 lutein ester첨가구의 순으로 나타났다. 5) 넙치의 carotenoid 대사경로는 lutein이 tunaxanthin으로 환원대사되는 것으로 추정할 수 있었다. 6) 넙치 표피의 carotenoid 색소는 zeaxanthin, lutein이 주성분을 이루고, 천연산과 양식산은 lutein과 β-carotene의 함량에서 서로 차이가 있었다.
    Carotene
    Canthaxanthin
    Citations (0)
    Carotenoids are natural pigment,different types of carotenoids have different physiological functions,this paper describes the conversion between many types of carotenoids,including lutein esters transformation to zeaxanthin,lutein transformation to,red pigment conversion to the 4-keto of red pigment,zeaxanthin conversion to astaxanthin,β-carotene conversion to cantharidin and lutein conversion to cryptoxanthin.
    Citations (0)