Role of carboxylic organic molecules in interfibrillar collagen mineralization
16
Citation
100
Reference
10
Related Paper
Citation Trend
Abstract:
Bone is a composite material made up of inorganic and organic counterparts. Most of the inorganic counterpart accounts for calcium phosphate (CaP) whereas the major organic part is composed of collagen. The interfibrillar mineralization of collagen is an important step in the biomineralization of bone and tooth. Studies have shown that synthetic CaP undergoes auto-transformation to apatite nanocrystals before entering the gap zone of collagen. Also, the synthetic amorphous calcium phosphate/collagen combination alone is not capable of initiating apatite nucleation rapidly. Therefore, it was understood that there is the presence of a nucleation catalyst obstructing the auto-transformation of CaP before entering the collagen gap zone and initiating rapid nucleation after entering the collagen gap zone. Therefore, studies were focused on finding the nucleation catalyst responsible for the regulation of interfibrillar collagen mineralization. Organic macromolecules and low-molecular-weight carboxylic compounds are predominantly present in the bone and tooth. These organic compounds can interact with both apatite and collagen. Adsorption of the organic compounds on the apatite nanocrystal governs the nucleation, crystal growth, lattice orientation, particle size, and distribution. Additionally, they prevent the auto-transformation of CaP into apatite before entering the interfibrillar compartment of the collagen fibril. Therefore, many carboxylic organic compounds have been utilized in developing CaP. In this review, we have covered different carboxylate organic compounds governing collagen interfibrillar mineralization.Keywords:
Amorphous calcium phosphate
Mineralized tissues
Octacalcium phosphate
Amorphous calcium phosphate
Stoichiometry
Cite
Citations (100)
The main focus of this article is the role of lipids in biomineralization. Much of the discussion on biomineralization focuses on proteins in these decades. Indeed, collagen and acidic noncollagenous proteins effectively serve as templates for mineralization. However, other macromolecules such as lipids and polysaccharides have received less attention despite their abundance at mineralization sites. The matrix vesicle (MV) theory is widely accepted as the induction of early mineralization. Although ion concentration within the vesicles has been discussed in the initial mineralization in this theory, the role of phospholipids that constitute the vesicle membrane has not been discussed much. Comprehensive considerations, including pathological mineralization, exist regardless of the localization of MVs, the involvement of bacteria in dental calculus formation, and biomineralization caused by marine organisms such as corals, suggesting that initial mineralization found in these biological conditions might be a common reaction relating to lipids. In contrast, despite the abundance of lipids, mineralization occurs only in the limited tissue within our body. In other words, gathering knowledge and creating a path to understanding about lipid-based mineralization is extremely important in proposing new bone disease treatment methods. This article describes how lipids influence nucleation, mineralization, and expansion during hard tissue formation.
Cite
Citations (0)
Amorphous calcium phosphate
Mineralized tissues
Collagen fibril
Human tooth
Fibrillogenesis
Cite
Citations (89)
Biomineralization In article number 2301422, Song Chen, Helmut Cölfen, Bin Li, and co-workers report a novel and simple way to synthesize amorphous iron-calcium phosphate (Fe-ACP) particles with homogenous iron distribution and high stability in aqueous media. Their application yields calcium iron phosphate ceramics with superior mechanical strength and acid resistance. This presents a potential role in biomineralization and to fabricate acid-resistant high-performance bioceramics for bone and dental applications.
Amorphous calcium phosphate
Chemical Stability
Cite
Citations (1)
Brushite
Amorphous calcium phosphate
Hydroxylapatite
Whitlockite
Cite
Citations (10)
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Cite
Citations (129)
Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials, clog pores, and seal fractures. Although minerals formed by biomineralization are generally the same as that by mineralization, their mechanical behaviors show a significant discrepancy. This study aims to figure out the differences between biomineralization and mineralization processes by visualizing and tracking the formation of minerals using microfluidics. Both biomineralization and mineralization processes occurred in the Y-shaped sand-containing microchip that mimics the underground sand layers. Images from different areas in the reaction microchannel of microchips were captured to directly compare the distribution of minerals. Crystal size and numbers from different reaction times were measured to quantify the differences between biomineralization and mineralization processes in terms of crystal kinetics. Results showed that the crystals were precipitated in a faster and more uncontrollable manner in the mineralization process than that in the biomineralization process, given that those two processes presented similar precipitation stages. In addition, a more heterogeneous distribution of crystals was observed during the biomineralization process. The precipitation behaviors were further explained by the classical nucleation crystal growth theory. The present microfluidic tests could advance the understanding of biomineralization and provide new insight into the optimization of biocementation technology.
Cite
Citations (12)
Mineralized tissues
Cite
Citations (173)
Through evolution,vertebrates have chosen the calcium phosphate mineral apatite to mineralize their teeth and bones.We based on the basic principles of biomineralization and added different reagents to the solution which contain Ca2+ or Ca2+-PO3-4.The products to appear different morphologies with changes in different reagents,and they were characterized by scanning electron microscopy(SEM) and powder X-ray diffraction(XRD) analysis.We discussed the reason why vertebrates utilize the calcium phosphate mineral apatite for structural support.
Cite
Citations (0)
A comparative study of polyvinylidene fluoride (PVDF) and polycaprolactone (PCL) incorporated with particles of amorphous calcium phosphate on the induction of apatite formation ability in simulated body fluid (SBF)-biomimetic environment has been investigated. PVDF and PCL films containing amorphous calcium phosphate particles were fabricated using the solvent casting method. These amorphous calcium phosphate particles were highly active in inducing apatite formation. Results showed that both PCL and PVDF successfully resulted in apatite formation in SBF. However, it was found that the amount of amorphous calcium phosphate particles and the induction period of the apatite formation in SBF significantly varied for PVDF and PCL. These types of bioactive polymeric composite materials are attractive candidates as bone restorative materials with flexibility as well as high apatite forming ability.
Amorphous calcium phosphate
Polyvinylidene fluoride
Simulated body fluid
Polycaprolactone
Cite
Citations (3)