logo
    Data from Increased Fibroblast Growth Factor-Inducible 14 Expression Levels Promote Glioma Cell Invasion via Rac1 and Nuclear Factor-κB and Correlate with Poor Patient Outcome
    0
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    <div>Abstract<p>Glial tumors progress to malignant grades by heightened proliferation and relentless dispersion throughout the central nervous system. Understanding genetic and biochemical processes that foster these behaviors is likely to reveal specific and effective targets for therapeutic intervention. Our current report shows that the fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed at high levels in migrating glioma cells <i>in vitro</i> and invading glioma cells <i>in vivo</i>. Forced Fn14 overexpression stimulates glioma cell migration and invasion, and depletion of Rac1 by small interfering RNA inhibits this cellular response. Activation of Fn14 signaling by the ligand TNF-like weak inducer of apoptosis (TWEAK) stimulates migration and up-regulates expression of Fn14; this TWEAK effect requires Rac1 and nuclear factor-κB (NF-κB) activity. The Fn14 promoter region contains NF-κB binding sites, which mediate positive feedback causing sustained overexpression of Fn14 and enduring glioma cell invasion. Furthermore, <i>Fn14</i> gene expression levels increase with glioma grade and inversely correlate with patient survival. These results show that the Fn14 cascade operates as a positive feedback mechanism for elevated and sustained Fn14 expression. Such a feedback loop argues for aggressive targeting of the Fn14 axis as a unique and specific driver of glioma malignant behavior. (Cancer Res 2006; 66(19): 9535-42)</p></div>
    Abstract Studies have shown that mSin1, a major component of mTORC2, plays an important role in tumor cell migration and invasion as well as cancer metastasis. However, how mSin1 regulates cell migration is poorly understood. In this study, we found that knockout of mSin1 suppressed cell spreading and migration in mouse embryo fibroblasts (MEFs). Similarly, knockdown of mSin1 also inhibited cell spreading and migration in rhabdomyosarcoma (Rh30) and cervical cancer (HeLa) cells. Furthermore, we observed that knockout or knockdown of mSin1 reduced the activities of the small GTPases (RhoA and Rac1) in the cells. Ectopic expression of constitutively active Rac1, but not RhoA, partially attenuated the reduced cell spreading and migration induced by mSin1 deficiency. In addition, depletion of mSin1 remarkedly inhibited the phosphorylation of focal adhesion proteins, including focal adhesion kinase (FAK) at Tyr397 and paxillin at Tyr118 in the cells. The results suggest that mSin1 controls cell spreading and migration at least partly by mediating the activity of Rac1 and the phosphorylation of FAK. (Supported by the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, LA, USA) Citation Format: Shile Huang, Lei Liu, Yan Luo. Mechanism of mSin1 regulation of cell migration [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2406.
    Paxillin
    HeLa
    CDC42
    Knockout mouse
    RNA interference (RNAi) has become the cornerstone technology for studying gene function in mammalian cells. In addition, it is a promising therapeutic treatment for multiple human diseases. Virus-mediated constitutive expression of short hairpin RNA (shRNA) has the potential to provide a permanent source of silencing molecules to tissues, and it is being devised as a strategy for the treatment of liver conditions such as hepatitis B and hepatitis C virus infection. Unintended interaction between silencing molecules and cellular components, leading to toxic effects, has been described in vitro. Despite the enormous interest in using the RNAi technology for in vivo applications, little is known about the safety of constitutively expressing shRNA for multiple weeks. Here we report the effects of in vivo shRNA expression, using helper-dependent adenoviral vectors. We show that gene-specific knockdown is maintained for at least 6 weeks after injection of 1 × 10(11) viral particles. Nonetheless, accumulation of mature shRNA molecules was observed up to weeks 3 and 4, and then declined gradually, suggesting the buildup of mature shRNA molecules induced cell death with concomitant loss of viral DNA and shRNA expression. No evidence of well-characterized innate immunity activation (such as interferon production) or saturation of the exportin-5 pathway was observed. Overall, our data suggest constitutive expression of shRNA results in accumulation of mature shRNA molecules, inducing cellular toxicity at late time points, despite the presence of gene silencing.
    Citations (13)
    RNA interference (RNAi) by means of short hairpin RNA (shRNA) has developed into a powerful tool for loss-of-function analysis in mammalian cells. The principal problem in RNAi experiments is off-target effects, and the most vigorous demonstration of the specificity of shRNA is the rescue of the RNAi effects with a shRNA-resistant target gene. This presents its own problems, including the unpredictable relative expression of shRNA and rescue cDNA in individual cells, and the difficulty in generating stable cell lines. In this report, we evaluated the plausibility of combining the expression of shRNA and rescue cDNA in the same vector. In addition to facilitate the validation of shRNA specificity, this system also considerably simplifies the generation of shRNA-expressing cell lines. Since the compensatory cDNA is under the control of an inducible promoter, stable shRNA-expressing cells can be generated before the knockdown phenotypes are studied by conditionally turning off the rescue protein. Conversely, the rescue protein can be activated after the endogenous protein is completely repressed. This approach is particularly suitable when prolonged expression of either the shRNA or the compensatory cDNA is detrimental to cell growth. This system allows a convenient one-step validation of shRNA and generation of stable shRNA-expressing cells.
    Citations (23)
    Specific, potent, and sustained short hairpin RNA (shRNA)-mediated gene silencing is crucial for the successful application of RNA interference technology to therapeutic interventions. We examined the effects of shRNA expression in primary human lymphocytes (PBLs) using lentiviral vectors bearing different RNA polymerase III promoters. We found that the U6 promoter is more efficient than the H1 promoter for shRNA expression and for reducing expression of CCR5 in PBLs. However, shRNA expression from the U6 promoter resulted in a gradual decline of the transduced cell populations. With one CCR5 shRNA this decline could be attributed to elevated apoptosis but another CCR5 shRNA that caused cytotoxicity did not show evidence of apoptosis, suggesting sequence-specific mechanisms for cytotoxicity. In contrast to the U6 promoter, PBLs transduced by vectors expressing shRNAs from the H1 promoter could be maintained without major cytotoxic effects. Since a lower level of shRNA expression appears to be advantageous to maintaining the shRNA-transduced population, lentiviral vectors bearing the H1 promoter are more suitable for stable transduction and expression of shRNA in primary human T lymphocytes. Our results suggest that functional shRNA screens should include tests for both potency and adverse metabolic effects upon primary cells.
    Transduction (biophysics)
    RNA polymerase III
    Citations (152)
    Several studies have reported that short hairpin RNA (shRNA)-mediated RNA interference (RNAi) was competitively inhibited by the expression of adenovirus (Ad)-encoded small RNAs (VA-RNAs), which are expressed from a replication-incompetent Ad vector, as well as a wild-type Ad; however, it remained to be clarified whether an shRNA-expressing Ad vector-mediated knockdown was inhibited by VA-RNAs transcribed from the same Ad vector genome. In this study, we demonstrated that a lack of VA-RNA expression from the Ad vector leads to an increase in knockdown efficiencies of Ad vector-mediated RNAi. In the cells transduced with a first-generation Ad vector (FG-Ad) expressing shRNA (FG-Ad-shRNA), the copy numbers of shRNA and VA-RNAs incorporated into the RNA-induced silencing complex (RISC) was comparable. In contrast, higher amounts of shRNA were found in the RISC when the cells were transduced with an shRNA-expressing helper-dependent Ad (HD-Ad) vector, in which all viral genes, including VA-RNAs, were deleted (HD-Ad-shRNA), compared with FG-Ad-shRNA. HD-Ad vectors expressing shRNA against luciferase and p53 showed 7.4% and 37.3% increases in the knockdown efficiencies compared to the corresponding FG-Ad-shRNA, respectively, following in vitro transduction. Furthermore, higher levels of knockdown efficiencies were also found by the transduction with shRNA-expressing Ad vectors lacking VA-RNA expression (AdΔVR-shRNA) than by transduction with FG-Ad-shRNA. These results indicate that VA-RNAs expressed from an Ad vector inhibit knockdown by the shRNA-expressing Ad vector and that HD-Ad-shRNA and AdΔVR-shRNA are a powerful framework for shRNA-mediated knockdown.
    Transduction (biophysics)
    RNA polymerase III