logo
    Interactions of the Protein Tyrosine Phosphatase PTPN3 with Viral and Cellular Partners through its PDZ Domain: Insights into Structural Determinants and Phosphatase Activity
    0
    Citation
    61
    Reference
    10
    Related Paper
    Abstract:
    Abstract The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a phosphatase containing a PDZ (PSD-95/Dlg/ZO-1) domain that has been found to play both tumor-suppressive and tumor-promoting roles in various cancers, despite limited knowledge of its cellular partners and signaling functions. Notably, the high-risk genital human papillomavirus (HPV) types 16 and 18 and the hepatitis B virus (HBV) target the PDZ domain of PTPN3 through PDZ-binding motifs (PBMs) in their E6 and HBc proteins respectively. This study focuses on the interactions between the PTPN3 PDZ domain (PTPN3-PDZ) and PBMs of viral and cellular protein partners. The solved X-ray structures of complexes between PTPN3-PDZ and PBMs of E6 of HPV18 and the tumor necrosis factor-alpha converting enzyme (TACE) reveal two novel interactions. We provide new insights into key structural determinants of PBM recognition by PTPN3 by screening the selectivity of PTPN3-PDZ recognition of PBMs, and by comparing the PDZome binding profiles of PTPN3-recognized PBMs and the interactome of PTPN3-PDZ. The PDZ domain of PTPN3 was known to auto-inhibit the protein’s phosphatase activity. We discovered that the linker connecting the PDZ and phosphatase domains is involved in this inhibition, and that the binding of PBMs does not impact this catalytic regulation. Overall, the study sheds light on the interactions and structural determinants of PTPN3 with its cellular and viral partners, as well as on the inhibitory role of its PDZ domain on its phosphatase activity.
    Keywords:
    PDZ domain
    PDZ proteins usually contain multiple protein-protein interaction domains and act as molecular scaffolds that are important for the generation and maintenance of cell polarity and cell signaling. Here, we identify and characterize TIP-1 as an atypical PDZ protein that is composed almost entirely of a single PDZ domain and functions as a negative regulator of PDZ-based scaffolding. We found that TIP-1 competes with the basolateral membrane mLin-7/CASK complex for interaction with the potassium channel Kir 2.3 in model renal epithelia. Consequently, polarized plasma membrane expression of Kir 2.3 is disrupted resulting in pronounced endosomal targeting of the channel, similar to the phenotype observed for mutant Kir 2.3 channels lacking the PDZ-binding motif. TIP-1 is ubiquitously expressed, raising the possibility that TIP-1 may play a similar role in regulating the expression of other membrane proteins containing a type I PDZ ligand.
    PDZ domain
    CASK
    Cell polarity
    Transport protein
    HEK 293 cells
    Guanylate kinase
    Citations (47)
    PDZK1 (also known as CAP70, NHERF3, or NaPi-Cap1) is a scaffolding protein composed of four PDZ (Post-Synaptic Density-95, Discs Large, Zonula Occludens-1) domains followed by a short carboxyl-terminal tail. This scaffold acts as a mediator of localization and expression levels of multiple receptors in the kidney, liver, and endothelium. Here, we characterize the self-association properties of the protein. PDZK1 can undergo modest homodimerization in vivo and in vitro through self-association involving its third PDZ domain. In addition, the tail of PDZK1 interacts in an intramolecular fashion with the first PDZ domain, but this interaction does not contribute to dimer formation. The interaction between the tail of PDZK1 and its first PDZ domain induces the protein to adopt a more compact conformation. A head-to-tail association has also been reported for EBP50/NHERF1, a two-PDZ domain member of the same scaffolding protein family as PDZK1, and shown to regulate binding of target proteins to the EBP50 PDZ domains. As opposed to EBP50, the association of PDZK1 with specific ligands for its PDZ domains is unaffected by the intramolecular association, establishing a different mode of interaction among these two members of the same scaffolding family. However, the tail of PDZK1 interacts with the PDZ domains of EBP50, and this interaction is negatively regulated by the intramolecular association of PDZK1. Thus, we have uncovered a regulated association between the two PDZ-containing scaffolding molecules, PDZK1 and EBP50.
    PDZ domain
    Citations (46)
    PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds.
    PDZ domain
    Citations (21)
    Abstract The postsynaptic density protein‐95/disks large/zonula occludens‐1 (PDZ) protein domain family is one of the most common protein–protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context. © 2012 International Union of Biochemistry and Molecular Biology, Inc.
    PDZ domain
    Postsynaptic density
    Citations (70)
    The protein kinase D (PKD) family plays a role in many cellular functions including the regulation of Golgi sorting, apoptosis, cell growth and cell survival. The mammalian PKD family consists of three isoforms, PKD1, PKD2 and PKD3, and of these, PKD1 and PKD2 contain PDZ‐binding motifs at their C‐terminus. Using a proteomic array containing 96 purified PDZ domains, we have identified domains that interact with the 25 C‐terminal residues of PKD1 or PKD2. We show that PKD activity localized at the PDZ domain scaffold is significantly greater than bulk cytosolic activity. Specifically, a FRET‐based kinase activity reporter designed to report PKD signaling, DKAR (D Kinase Activity Reporter), when targeted to the scaffold protein, reveals enhanced amplitude and duration of signaling compared to cytosol. Thus, this study unveils novel protein scaffolds that localize PKD activity. This work was supported by NIH P01 DK54441
    PDZ domain
    PKD1
    HEK 293 cells
    PSD-95 is a member of the membrane-associated guanylate kinase class of proteins that forms scaffolding interactions with partner proteins, including ion and receptor channels. PSD-95 is directly implicated in modulating the electrical responses of excitable cells. The first two PSD-95/disks large/zona occludens (PDZ) domains of PSD-95 have been shown to be the key component in the formation of channel clusters. We report crystal structures of this dual domain in both apo- and ligand-bound form: thermodynamic analysis of the ligand association and small-angle x-ray scattering of the dual domain in the absence and presence of ligands. These experiments reveal that the ligated double domain forms a three-dimensional scaffold that can be described by a space group. The concentration of the components in this study is comparable with those found in compartments of excitable cells such as the postsynaptic density and juxtaparanodes of Ranvier. These in vitro experiments inform the basis of the scaffolding function of PSD-95 and provide a detailed model for scaffold formation by the PDZ domains of PSD-95.
    PDZ domain
    Guanylate kinase
    Postsynaptic density
    Citations (11)
    단백질-단백질 결합은 수용체 단백질, 효소, 세포 골격 단백질의 세포내 위치 결정 및 기능 조절에 중요한 역할을 한다. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) 도메인을 가진 단백질들은 시냅스 가소성, 신경세포 성장과 분화뿐만 아니라 많은 질병의 병태생리에 중요하게 관여하는 scaffold 단백질로 작용한다. Multi-PDZ domain protein 1 (MUPP1)은 13개 PDZ 도메인을 가지는 단백질로서 세포막 수용체 군집화, 신호전달 복합체 구성, 세포 골격 조정에 대한 매개 역할을 하는 것으로 알려지고 있지만 MUPP1의 세포 내 기능은 아직 명확히 밝혀지지 않았다. 본 연구에서 MUPP1의 아미노 말단 PDZ 도메인과 결합하는 새로운 단백질을 규명하기 위하여 효모 two-hybrid 방법을 이용하였고 Wdpcp (전에 Fritz로 알려짐)이 MUPP1과 결합하는 것을 확인하였다. Wdpcp는 planar cell polarity (PCP) effector로서 세포 이동과 섬모형성에 관여하는 것으로 알려져 있다. Wdpcp는 MUPP1의 첫 번째 PDZ 도메인과 결합하지만, 다른 PDZ 도메인과는 결합하지 않았다. 또한 MUPP1와 Wdpcp의 결합에서 Wdpcp의 C-말단부위가 결합에 필수적임을 효모 two-hybrid 방법으로 확인하였다. 이러한 단백질간 결합은 glutathione S-transferase (GST) pull-down assay, 공동면역침강, HEK-293T 세포에서의 발현위치를 통하여 추가적으로 확인하였다. 이러한 결과들은, MUPP1과 Wdpcp 결합은 세포내 액틴 다이내믹스(dynamics)와 세포이동 조절에 역할을 할 가능성을 시사한다. Protein-protein interactions regulate the subcellular localization and function of receptors, enzymes, and cytoskeletal proteins. Proteins containing the postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain have potential to act as scaffolding proteins and play a pivotal role in various processes, such as synaptic plasticity, neural guidance, and development, as well as in the pathophysiology of many diseases. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, has a scaffolding function in the clustering of surface receptors, organization of signaling complexes, and coordination of cytoskeletal dynamics. However, the cellular function of MUPP1 has not been fully elucidated. In the present study, a yeast two-hybrid system was used to identify proteins that interacted with the N-terminal PDZ domain of MUPP1. The results revealed an interaction between MUPP1 and Wdpcp (formerly known as Fritz). Wdpcp was identified as a planar cell polarity (PCP) effector, which is known to have a role in collective cell migration and cilia formation. Wdpcp bound to the PDZ1 domain but not to other PDZ domains of MUPP1. The C-terminal end of Wdpcp was essential for the interaction with MUPP1 in the yeast two-hybrid assay. This interaction was further confirmed in a glutathione S-transferase (GST) pull-down assay. When coexpressed in HEK-293T cells, Wdpcp was coimmunoprecipitated with MUPP1. In addition, MUPP1 colocalized with Wdpcp at the same subcellular region in cells. Collectively, these results suggest that the MUPP1-Wdpcp interaction could modulate actin cytoskeleton dynamics and polarized cell migration.
    PDZ domain
    Postsynaptic density
    HEK 293 cells
    Cell polarity
    Citations (0)
    This chapter contains sections titled: Introduction Structural Analysis of PDZ Domains Analysis of PDZ Domain–Ligand Interactions with Mutagenesis and Synthetic Peptides Molecular and Signaling Functions of PDZ Domains INAD as a Molecular Scaffold LIN-7–Receptor Tyrosine Kinase Interactions and Subcellular Localization PDZ Domain Proteins and Epithelial Polarity Induction and Maintenance A Few Miscellaneous Examples: The Synapse, Disheveled, CARD MAGUKs, and Beta Adrenergic Receptors Concluding Remarks References
    PDZ domain
    Citations (1)
    The PHLPP family of serine/threonine protein phosphatases plays a critical role in regulating the balance between cell survival and apoptosis. The PHLPP family consists of three members, the N‐terminal alternative splice variants, PHLPP1α and PHLPP1β, and PHLPP2, a separate gene product. All isozymes contain a type I PDZ‐binding motif at their C‐terminus: TPL for PHLPP1 and TAL for PHLPP2. We sought to identify potential PDZ domain‐containing proteins that scaffold these phosphatases in order to elucidate differences in PHLPP1 and PHLPP2 signaling at spatially restricted locations within the cell. Using a proteomic array containing 96 purified PDZ domains, we have identified domains that interact with the 25 C‐terminal residues of PHLPP1 and PHLPP2. Specifically, we have observed that the PDZ ligands of both PHLPP1 and PHLPP2 can interact with the scaffold proteins NHERF‐1 and NHERF‐2. In live cells, addition of the last 10 residues of PHLPP1 or PHLPP2 to cyan fluorescent protein (CFP) is sufficient to relocalize CFP to NHERF‐1 or NHERF‐2. However, NHERF‐dependent relocalization is only observed for full‐length PHLPP2; full‐length PHLPP1 is in a conformation in which the C‐terminus is not available to interact with the NHERF PDZ domains. These results suggest differential signaling by PHLPP2 versus PHLPP1 at the NHERF scaffold. This work was supported by NIH P01 DK54441
    PDZ domain
    Protein phosphatase 1