logo
    CCDC 1535081: Experimental Crystal Structure Determination
    0
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
    A new phase, BaNb6.3(1)Ti3.6(1)O16, has been synthesised. Electron diffraction studies indicate an hexagonal substructure with unit cell parameters a ≈ 8.9 Å and c ≈ 9.5 Å. In some of the ED patterns superstructure reflections are present, indicating a supercell with a = √3 · asub and c = csub. However, X-ray single-crystal diffraction studies of a crystallite yielding reflections corresponding to the supercell revealed it to be monoclinic, with the unit cell parameters a = 26.811(2) Å, b = 15.4798(2) Å, c = 9.414(2) Å, β = γ = 90° and α = 90.0(3)°. The average crystal structure was refined, using the subcell with a = 8.937(2) Å, b = 15.479(2) Å, c = 9.414(2) Å, β = γ = 90° and α = 90.0(3)°, space group Cm11, and Z = 4, to RI = 3.24% and RwI = 3.44%. The structure can be described as an hexagonal close packing layers of Nb6 octahedra, Ba, and O atoms (A1, A2) and layers of O atoms (B1, B2), appearing in the packing sequence: A1B1A2B2. The Nb6 octahedra are found in isolated Nb6O12O6 clusters, and the Ti atoms in Ti3O13 and Ti3O10 units in octahedral and tetrahedral voids formed by O atoms, respectively. The Ti positions were found to be only partly occupied. Microanalysis indicates that some Nb atoms are located in the Ti3 triangles. A model is presented that interprets these not fully occupied Ti3 triangles as a result of a superimposing of three different structures. Two of these consist of two fused Ti3O13 units, forming an Ti6O19 unit, and a Ti3O10 unit, while the third consists of alternating Ti3O13 units. Die Kristallstruktur von BaNb6.3(1)Ti3.6(1)O16 mit Nb6O12, und verknüpften Ti3O13-Clustern sowie Ti3O10-Einheiten Eine neue Phase, BaNb6.3(1)Ti3.6(1)O16, wurde synthetisiert. Elektronenbeugungsuntersuchungen zeigen eine hexagonale Überstruktur mit den Zellparametern a £ 8.9 Å und c ≈ 9.5 Å. In einigen Beugungsbildern sind Überstrukturreflexe vorhanden, die auf eine Superzelle mit a = √3 · asub und c = csub hinweisen. Röntgen-Einkristallbeugungsaufnahmen an einem Kristall ergeben eine monokline Superzelle mit a = 26.811(2) Å, b = 15.4798(2) Å, c = 9.414(2) Å, β = γ = 90° und α = 90.0(3)°. Die (mittlere) Kristallstruktur wurde verfeinert unter Einbeziehung der Subzelle mit a = 8.937(2) Å, b = 15.479(2) Å, c = 9.414(2) Å, β = γ = 90° und α = 90.0(3)°, Raumgruppe Cm11, Z = 4, RI = 3.24% und RwI = 3.44%. Die Struktur kann als hexagonal dichteste Packung von zwei Schichten bestehend aus Nb6-Oktaedern, Ba- und O-Atomen (A1, A2) sowie aus O-Atomen (B1, B2) mit der Packungsfolge A1B1A2B2 beschrieben werden. Die Nb6-Oktaeder sind in isolierte Nb6O12O6-Clustern inkorpuriert, und die Ti-Atome in Ti3O13- und Ti3O10-Einheiten in oktaedrischen bzw. tetraedrischen Lücken, die von O-Atomen gebildet werden. Die Ti-Positionen sind nur teilweise besetzt. Mikroanalysen zeigen, dass einige Nb-Atome in den Ti3-Dreiecken lokalisiert sind. Ein Modell wird vorgestellt, nach dem die nicht vollbesetzten Ti3-Dreiecke als Ergebnis einer Überlagerung von drei unterschiedlichen Strukturen interpretiert werden: Zwei von diesen bestehen aus verknüpften Ti3O13-Einheiten, die eine Ti6O19- und eine Ti3O10-Einheit bilden, während eine dritte aus alternierenden Ti3O13-Einheiten besteht.
    Supercell
    Monoclinic crystal system
    Superstructure
    Substructure
    Crystal (programming language)
    Tetrahedron
    Triclinic crystal system
    The new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. Li(1.3)Na(0.7)Ni[PO(4)]F crystallizes with the orthorhombic Li(2)Ni[PO(4)]F structure, space group Pnma, a = 10.7874(3), b = 6.2196(5), c = 11.1780(4) Å and Z = 8, LiNaNi[PO(4)]F crystallizes with a monoclinic pseudomerohedrally twinned structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, β = 90° and Z = 4, and Na(2)Ni[PO(4)]F crystallizes with a monoclinic twinned structure, space group P2(1)/c, a = 13.4581(8), b = 5.1991(3), c = 13.6978(16) Å, β = 120.58(1)° and Z = 8. For x = 0.7 and 1, the structures contain NiFO(3) chains made up of edge-sharing NiO(4)F(2) octahedra, whereas for x = 2 the chains are formed of dimer units (face-sharing octahedra) sharing corners. These chains are interlinked by PO(4) tetrahedra forming a 3D framework for x = 0.7 and different Ni[PO(4)]F layers for x = 1 and 2. A sodium/lithium disorder over three atomic positions is observed in Li(1.3)Na(0.7)Ni[PO(4)]F structure, whereas the alkali metal atoms are well ordered in between the layers in the LiNaNi[PO(4)]F and Na(2)Ni[PO(4)]F structures, which makes both compounds of great interest as potential positive electrodes for sodium cells.
    Monoclinic crystal system
    Orthorhombic crystal system
    Citations (18)
    Scandium
    Tetrahedron
    Stoichiometry
    Bipyramid
    Crystal (programming language)
    Citations (0)
    Five isomorphous d 0 transition metal oxofluoride compounds A 3 [ M 2 O x F 11 − x ]·( A F) 0.333 ( A = K, Rb, NH 4 ; M = Nb, Mo, W; x = 2, 4) have been synthesized from acid fluoride solutions, and their crystal structures have been determined by single-crystal X-ray diffraction. The basic structural building units are dinuclear M 2 X 11 (dimers) formed from NbOF 5 or Mo(W)O 2 F 4 octahedra connected by the fluorine bridging atom. In the Nb 2 O 2 F 9 dimer, the O atoms occupy apical corners. In the M 2 O 4 F 7 ( M = Mo, W) dimers two O atoms are also apically placed, whereas the other two O atoms are statistically disordered in equatorial planes. The arrangement of dimers is so that the hexagonal tunnels containing `free' fluoride ions are formed. During the irradiation process the orthorhombic structure of K 3 Nb 2 O 2 F 9 ·(KF) 0.333 transforms into a pseudo-trigonal one with a = 23.15 Å, which is the [101] diagonal of the orthorhombic unit cell. The other four trigonal crystals are merohedral twins.
    Orthorhombic crystal system
    Fluorine
    Citations (7)
    A new vanadium(III) phosphate, Ba[VIII2(HPO4)4](H2O), has been synthesized by hydrothermal methods, and its structure solved by single-crystal X-ray diffraction. This vanadium phosphate crystallizes in the monoclinic system, space group P21. The cell parameters are a = 9.441(2), b = 7.913(2), c = 9.521(2) Å; β = 117.91(2)°; V= 628.5(3)Å3; Z = 2; Dcalc = 3.387 mg mm−3; R = 0.055 and Rw = 0.065 for 1885 reflections with F > 6.0σ(F). The threedimensional [V2(HPO4)4(H2O)]2− lattice can be described as being built up of chains of eight-membered rings along the c axis, formed by corner-shared VO6 octahedra and HPO4 tetrahedra (-V-O-P-O-), which are crosslinked via interchain V-O-P bonding to produce a three-dimensional lattice. The crosslinking interaction produces 16-membered rings. Contrary to other low-valent vanadium phosphates, cavities are found in the solid,rather than tunnels. The Ba2+ and H2O are located in these cavities.
    Monoclinic crystal system
    Hydrothermal Synthesis
    Tetrahedron
    Lattice (music)