logo
    Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy
    13
    Citation
    64
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Thanks to their excellent photoelectric characteristics to generate cytotoxic reactive oxygen species (ROS) under the light-activation process, TiO2 nanomaterials have shown significant potential in photodynamic therapy (PDT) for solid tumors. Nevertheless, the limited penetration depth of TiO2-based photosensitizers and excitation sources (UV/visible light) for PDT remains a formidable challenge when confronted with complex tumor microenvironments (TMEs). Here, we present a H2O2-driven black TiO2 mesoporous nanomotor with near-infrared (NIR) light absorption capability and autonomous navigation ability, which effectively enhances solid tumor penetration in NIR light-triggered PDT. The nanomotor was rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of a NIR light-responsive black TiO2 nanosphere and an enzyme-modified periodic mesoporous organosilica (PMO) nanorod that wraps around the TiO2 nanosphere. The overexpressed H2O2 can drive the nanomotor in the TME under catalysis of catalase in the PMO domain. By precisely controlling the ratio of TiO2 and PMO compartments in the Janus nanostructure, TiO2&PMO nanomotors can achieve optimal self-propulsive directionality and velocity, enhancing cellular uptake and facilitating deep tumor penetration. Additionally, by the decomposition of endogenous H2O2 within solid tumors, these nanomotors can continuously supply oxygen to enable highly efficient ROS production under the NIR photocatalysis of black TiO2, leading to intensified PDT effects and effective tumor inhibition.
    Keywords:
    Penetration (warfare)
    bilayer Janus pellicle (denoted as BJP) of concurrent double aeolotropic electrical conduction, superparamagnetism and luminescence is designed and constructed via electrospinning by using one-dimensional (1D) nanofibers and Janus nanoribbons as constructive units.The BJP comprises top-down two layers tightly bonded together.The top layer is a left-right structured Janus film which consists of Janus nanoribbons array as left and right side, and further, arrangement orientations of Janus nanoribbons in the two sides are perpendicular, leading to double aeolotropic conduction, and the conduction ratio reaches 10 8 times.The down layer is a non-array luminescent film made of nanofibers.Under the excitation by 291 and 294 nm light, red luminescence of the left side of the top layer and green luminescence of down layer in BJP are respectively achieved.The maximum saturation magnetization of the top layer can reach 21.45 (emu/g).By rolling the 2D BJP into the tube respectively with the ways of rolling from left to right or from up to down, three-dimensional (3D) dual-wall Janus-type tube with the Janus-type tube as outer or inner and the homogeneous tube as inner or outer is obtained.
    Micro- and macro-divisions realized synchronously in the SJM are integrated into Janus tubules to reduce the adverse interactions among the various substances, and realize the triumphant transition from a 2D Janus array membrane to 3D Janus tubules.
    Magnetism
    Citations (7)
    Under-water and unidirectional air penetration was effectively achieved on the basis of a composite mesh with Janus wettability.
    Penetration (warfare)
    Air water
    Citations (93)
    Abstract Two‐dimensional (2D) stratified Janus membranes (denoted as SJM) with double aeolotropic electrical conduction and simultaneous magnetism and fluorescence have been designed and constructed via electrospinning by using one‐dimensional (1D) nanobelts and Janus nanobelts as building blocks. The SJM is composed of two layers tightly bonded together. The top layer is a left‐right structured Janus membrane, the left part and right part possess aeolotropic electrical conduction, and the conductive directions are vertical, leading to double aeolotropic conduction. Moreover, red and green fluorescence in the two parts occurs under UV irradiation. The bottom layer is a non‐array magnetic membrane. By rolling the 2D SJM into a tube, either from left to right or top to bottom, three‐dimensional (3D) double‐walled Janus tubes with the Janus tube and the isotropic tube on the exterior and interior of the tube are obtained. The novel 3D double‐walled Janus tubes exhibit the same excellent performance as the 2D SJM. Thus, the structural transition from 1D nanobelts and Janus nanobelts utilized as building units to 2D double aeolotropic conductive Janus membrane then to 3D Janus tube is successfully realized.
    Citations (12)
    为研究液滴碰撞Janus颗粒(双亲性)球表面的独特行为特征, 以粒径为5.0 mm铜球为材料制备了Janus颗粒, 用直径为2.0 mm的液滴, 在韦伯数(We)为2.7, 10, 20, 30的测试情况下对Janus颗粒球表面进行了碰撞实验. 结果表明: 液滴碰撞Janus颗粒球表面后的运动可分为铺展、回缩、振荡和回弹4个过程. 在不同We下, 液滴碰撞Janus颗粒后的运动状态主要与表面润湿性相关, 在Janus颗粒亲水侧表现为铺展特性且铺展系数γ随着时间t的增大而逐渐增大并趋于稳定; 但在疏水侧, 表现为回弹现象, 铺展系数γ会出现类似"抛物线"形状; 当液滴碰撞Janus颗粒球表面亲-疏水分界线时, 液滴铺展和回弹同时发生. 基于能量平衡和受力分析发现, 液滴动能和表面能的互相转化是液滴铺展的关键, 液滴会在重力、惯性力、表面张力、黏性力、接触力等力的综合作用下展现其独特的行为特征并最终达到平衡状态.
    Janus Particles
    Particle (ecology)
    Citations (2)
    光化学治療:(Photodynamic Therapy, PDT)は標的組織(腫瘍あるいは非腫瘍病変)において光感受性物質,光および酸素の3要素によって惹起される光化学反応の細胞障害作用を利用する治療法である.癌のPDTでは先ず,腫瘍親和性のある光感受性物質を投与した後,標的腫瘍をレーザーで光照射する.標的腫瘍組織では光感受性物質が励起されて光化学反応が起こり活性酸素が発生する.この活性酸素の強力な酸化作用が細胞を障害することになる.活性酸素の酸化作用に対して細胞は修復反応により抵抗するが,障害作用が勝る細胞ではネクローシスあるいはアポトーシスによる細胞死が誘導される.PDTによる急速なアポトーシス誘導は抗腫瘍効果の要因と考えられる.癌組織破壊は活性酸素による癌細胞の障害と血管障害による他,炎症性細胞浸潤と誘導される腫瘍免疫反応による.長期間の腫瘍制御を得る上で腫瘍免疫の成立は重要である.PDTの抗腫瘍効果を増強する手段について実験的に検討した我々の結果は以下のとおりである.(1)分割光照射PDTでは標的組織の再酸素化により有効な抗腫瘍効果が得られる.(2)PDTと抗癌剤シスプラチンの併用ではアポトーシス誘導が増加され抗腫瘍効果が相乗的に増強される.(3)ハイパーサーミア効果の併用はPDT作用を増強する.(4)PDTと免疫賦活剤OK-432の併用が有効である.レーザー光の組織内深達性は浅いため,PDTは表在性病変に効果があり,深い病変では有効性が低い.本邦では光感受性物質ポルフィマーナトリウム(商品名,フォトフリン)を使用するPDTが食道癌,肺癌,子宮頸癌のいずれも初期病変,および子宮頸部異形成を適応症として認可されている.我々は口腔粘膜扁平上皮癌の初期病変を対象にフォトフリン・PDTの臨床治験を開始した.PDTは他の非観血的方法と比しても毒性と侵襲の少ない治療法である.今後,PDTの研究は種々の疾患の治療や診断への応用を目的として展開できる新しい分野といえる.
    Citations (17)