Variable Penetrance and Expressivity of a Rare Pore Loss-of-Function Mutation (p.L889V) of Nav1.5 Channels in Three Spanish Families
María Gallego‐DelgadoAnabel Cámara-ChecaMarcos Rubio-AlarcónD.H. Heredero JungLaura de la Fuente BlancoJosu RapúnBeatriz Plata IzquierdoSara Pérez-MartínJorge CebriánLucía Moreno de RedrojoBelén García‐BerrocalEva DelpónPedro L. SánchezEduardo VillacortaRicardo Caballero
0
Citation
37
Reference
10
Related Paper
Abstract:
A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic–phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (−69.4 ± 9.0 pA/pF) or in combination with WT (−62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (−199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.Keywords:
Penetrance
Nav1.5
Loss function
ND7/23 cells are gaining traction as a host model to express peripheral sodium channels such as NaV1.8 and NaV1.9 that have been difficult to express in widely utilized heterologous cells, like CHO and HEK293. Use of ND7/23 as a model cell to characterize the properties of sodium channels requires clear understanding of the endogenous ion channels. To define the nature of the background sodium currents in ND7/23 cells, we aimed to comprehensively profile the voltage-gated sodium channel subunits by endpoint and quantitative reverse transcription-PCR and by whole-cell patch clamp electrophysiology. We found that untransfected ND7/23 cells express endogenous peak sodium currents that average –2.12nA (n = 15) and with kinetics typical of fast sodium currents having activation and inactivation completed within few milliseconds. Furthermore, sodium currents were reduced to virtually nil upon exposure to 100nM tetrodotoxin, indicating that ND7/23 cells have essentially null background for tetrodotoxin-resistant (TTX-R) currents. qRT-PCR profiling indicated a major expression of TTX-sensitive (TTX-S) NaV1.6 and NaV1.7 at similar levels and very low expression of TTX-R NaV1.9 transcripts. There was no expression of TTX-R NaV1.8 in ND7/23 cells. There was low expression of NaV1.1, NaV1.2, NaV1.3 and no expression of cardiac or skeletal muscle sodium channels. As for the sodium channel auxiliary subunits, β1 and β3 subunits were expressed, but not the β2 and β4 subunits that covalently associate with the α-subunits. In addition, our results also showed that only the mouse forms of NaV1.6, NaV1.7 and NaV1.9 sodium channels were expressed in ND7/23 cells that was originally generated as a hybridoma of rat embryonic DRG and mouse neuroblastoma cell-line. By molecular profiling of auxiliary β- and principal α-subunits of the voltage gated sodium channel complex, our results define the background sodium channels expressed in ND7/23 cells, and confirm their utility for detailed functional studies of emerging pain channelopathies ascribed to mutations of the TTX-R sodium channels of sensory neurons.
Nav1.5
NAV1
Tetrodotoxin
Cite
Citations (14)
Cite
Citations (0)
Nav1.5
Sarcolemma
Cardiac action potential
Cite
Citations (11)
Background: Brugada syndrome (BrS) is a rare inherited cardiac arrhythmia with increased risk of sudden cardiac death. Mutations in gene SCN5A, which encodes the α-subunit of cardiac voltage-gated sodium channel NaV1.5, have been identified in over 20% of patients with BrS. However, only a small fraction of NaV1.5 variants, which are associated with BrS, are characterized in electrophysiological experiments. Results: Here we explored variants V281A and L1582P, which were found in our patients with BrS, and variants F543L and K1419E, which are reportedly associated with BrS. Heterologous expression of the variants in CHO-K1 cells and the Western blot analysis demonstrated that each variant appeared at the cell surface. We further measured sodium current in the whole-cell voltage clamp configuration. Variant F543L produced robust sodium current with a hyperpolarizing shift in the voltage dependence of steady-state fast inactivation. Other variants did not produce detectable sodium currents, indicating a complete loss of function. In a recent cryoEM structure of the hNaV1.5 channel, residues V281, K1419, and L1582 are in close contacts with residues whose mutations are reportedly associated with BrS, indicating functional importance of respective contacts. Conclusions: Our results support the notion that loss of function of NaV1.5 or decrease of the channel activity is involved in the pathogenesis of BrS.
Nav1.5
Heterologous expression
Cite
Citations (4)
Voltage-gated sodium (Na
Nav1.5
NAV1
Concomitant
Cite
Citations (17)
It has previously been demonstrated that there are various voltage gated sodium channel (Nav) 1.5 splice variants expressed in brain tissue. A total of nine Nav1.5 isoforms have been identified, however, the potential presence of further Nav1.5 variants expressed in brain neurons remains to be elucidated. The present study systematically investigated the expression of various Nav1.5 splice variants and their associated electrophysiological properties in the rat brain tissue, via biochemical analyses and whole‑cell patch clamp recording. The results demonstrated that adult Nav1.5 was expressed in the rat, in addition to the neonatal Nav1.5, Nav1.5a and Nav1.5f isoforms. Further studies indicated that the expression level ratio of neonatal Nav1.5 compared with adult Nav1.5 decreased from 1:1 to 1:3 with age development from postnatal (P) day 0 to 90. This differed from the ratios observed in the developing rat hearts, in which the expression level ratio decreased from 1:4 to 1:19 from P0 to 90. The immunohistochemistry results revealed that Nav1.5 immunoreactivity was predominantly observed in neuronal cell bodies and processes, whereas decreased immunoreactivity was detected in the glial components. Electrophysiological analysis of Nav1.5 in the rat brain slices revealed that an Na current was detected in the presence of 300 nM tetrodotoxin (TTX), however this was inhibited by ~1 µM TTX. The TTX‑resistant Na current was activated at ‑40 mV and reached the maximum amplitude at 0 mV. The results of the present study demonstrated that neonatal and adult Nav1.5 were expressed in the rat brain and electrophysiological analysis further confirmed the functional expression of Nav1.5 in brain neurons.
NAV1
Nav1.5
Tetrodotoxin
splice
Cite
Citations (10)
The ACMG/AMP variant classification framework was intended for highly penetrant Mendelian conditions. While it is appreciated that clinically relevant variants exhibit a wide spectrum of penetrance, accurately assessing and expressing the pathogenicity of variants with lower penetrance can be challenging. The vinculin (VCL) gene illustrates these challenges. Model organism data provide evidence that loss of function of VCL may play a role in cardiomyopathy and aggregate case-control studies suggest low penetrance. VCL loss of function variants, however, are rarely identified in affected probands and therefore there is a paucity of family studies clarifying the clinical significance of individual variants. This study, which aggregated data from >18,000 individuals who underwent gene panel or exome testing for inherited cardiomyopathies, identified 32 probands with VCL loss-of-function variants and confirmed enrichment in probands with dilated cardiomyopathy (odds ratio [OR] = 9.01; confidence interval [CI] = 4.93-16.45). Our data revealed that the majority of these individuals (89.5%) had pediatric onset of disease. Family studies demonstrated that heterozygous loss of function of VCL alone is insufficient to cause cardiomyopathy but that these variants do contribute to disease risk. In conclusion, VCL loss-of-function variants should be reported in a diagnostic setting but need to be clearly distinguished as having lower penetrance.
Penetrance
Proband
Loss function
Exome
Mendelian inheritance
Cite
Citations (18)
Key Teaching Points•We found a novel variant in the SCN5A gene (p. Arg376Leu (R376L)) in a patient with a coexistence of Brugada syndrome and takotsubo cardiomyopathy.•Electrophysiological investigations are consistent with a loss of function in the cardiac sodium channel Nav1.5.•This case report highlights the uncertainty that follows the finding of rare genetic variants and coexisting phenotypes. •We found a novel variant in the SCN5A gene (p. Arg376Leu (R376L)) in a patient with a coexistence of Brugada syndrome and takotsubo cardiomyopathy.•Electrophysiological investigations are consistent with a loss of function in the cardiac sodium channel Nav1.5.•This case report highlights the uncertainty that follows the finding of rare genetic variants and coexisting phenotypes.
Nav1.5
Cite
Citations (0)
Nav1.5
NAV1
Cite
Citations (0)