Determination of the synergistic anti-influenza effect of Huangqin Su tablet and Oseltamivir and investigation of mechanism of the tablet based on gut microbiota and network pharmacology
3
Citation
52
Reference
10
Related Paper
Citation Trend
Abstract:
Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.Keywords:
Baicalein
Pharmacodynamics
Baicalein
Baicalin
Biotransformation
Cite
Citations (10)
현대사회가 급속한 노령화 시대에 접어들면서 뼈 건강에 대한 중요성이 증가됨으로써 최근, 천연물을 이용한 골질환의 치료제를 개발하기 위한 연구가 활발히 이루어지고 있다. Baicalein은 기존에 항암, 항염증, 항산화의 효과가 있고, MC3T3-E1 조골세포주의 분화를 촉진하며, RAW264.7세포주의 분화는 억제한다는 보고가 있다. 그러나 골수유래대식세포를 이용한 파골세포 분화의 억제기전에 대해서는 정확히 알려진 바가 없다. 그리하여 본 연구에서는 골수유래대식세포의 파골세포 분화에 있어 baicalein의 억제기전을 밝히고, 골수기질세포의 조골세포 분화에 미치는 영향을 탐색하기 위한 실험을 진행하였다. 파골세포 분화를 위해 골수유래대식세포를 사용하여 분화, mRNA 및 단백질 발현을 확인하였다. 조골세포 분화를 위해 골수기질세포를 사용하여 분화, ALP활성 및 미네랄 침착능을 확인하였다. Baicalein은 골수유래대식세포에서 RANKL로 유도한 파골세포로의 분화를 세포독성 없이 농도 의존적으로 억제하였다. 억제기전으로는 Akt, JNK, PLCγ2의 인산화를 억제하였고, NF-κB의 활성화를 억제하여 파골세포 분화의 필수 유전자인 c-Fos 및 NFATc1의 발현 역시 억제하였다. 또한 TRAP, OSCAR, cathepsin K와 DCSTAMP의 mRNA 수준의 발현을 감소시켰다. 이와 더불어, baicalein이 골 형성의 기능을 갖는 조골세포의 분화를 촉진하는 효과를 골수기질세포에서 확인하였다. Baicalein은 골수유래대식세포에서 파골세포 분화를 억제하고, 동시에 골수기질세포를 이용한 조골세포 분화를 높이는 양면적인 효과를 가지는 물질로, 향후 골 소실 질환 치료제 개발에 중요 후보물질이 될 것으로 사료된다.
Baicalein
Cite
Citations (3)
The excessive activation of extracellular signal-regulated kinase(ERK) signaling pathway,which is a significant feature of rheumatoid arthritic(RA) arthropathy,plays an important role in the process of synoviocyte dysfunction and destruction of cartilage and bone.Understanding the pathomechanism of ERK signaling in RA provides a new target for developing new drug and therapeutic strategy.This review summarizes the current knowledge of the activation,regulation and function of ERK pathway,and also analyzes the role of this signaling transduction in the destruction of joints and the pathogenesis of RA.
Pathogenesis
Cite
Citations (0)
At present,most studies suggest that activation of ERK signaling pathway can promote cell proliferation and JNK signaling pathway are closely related with apoptosis.They are also involved in the pathophysiology change process of many diseases.JNK signal transduction pathway is closely related with neurodegenerative disease or other neurological diseases.ERK signal transduction pathway may be the main mechanism of tumorgenesis and invasiveness,which is also involved in the generation of pains.ERK intracellular localization may be closely related with neuro denaturation.
Hes3 signaling axis
Cite
Citations (0)
Ammonia is treated as a primary waste product of cellular metabolism in vivo and can contribute to the alteration of neurotransmission, oxidative stress, and cerebral edema and astrocyte swelling when its concentration in the brain is high. The objective of this study was to determine whether bioactive polyphenol baicalein had the capacity to trap ammonia in vitro and in vivo. Under in vitro conditions, baicalein rapidly reacted with ammonia to generate two monoaminated products and one diaminated product under different reaction times. These three major aminated products were purified from the reaction mixture, and their structures were characterized as 5-NH2-baicalein, 6-NH2-baicalein, and 5,6-di-NH2-baicalein based on the analysis of their HR-MS and 1D- and 2D-NMR data. In mice, both 5-NH2-baicalein and 6-NH2-baicalein were detected in 24 h fecal and urine samples collected from mice treated with baicalein (200 mg/kg) through oral gavage, and 6-NH2-baicalein was also detected in mouse plasma and brain samples collected at 0.5 h after baicalein treatment. Significant amounts of 6-NH2-baicalein were detected in all mouse samples including feces, urine, plasma, and brain. The levels of 6-NH2-baicalein in feces and urine were significantly higher than those of 5-NH2-baicalein. Furthermore, the average level of 6-NH2-baicalein was very close to that of baicalein (3.62 vs 3.77 ng/g) in mouse brain, suggesting it is possible that baicalein has the capacity to be absorbed rapidly into the circulation system and then cross the blood-brain barrier into the brain to detoxify ammonia in the blood and brain. In conclusion, this study confirmed that baicalein, a flavonoid with a vic-trihydroxyl structure on the A-ring, has the potential to detoxify ammonia and treat ammonia-associated chronic diseases.
Baicalein
Cite
Citations (2)
Extracellular signal-regulated kinase (ERK) signaling pathway is one of the mitogen-activated protein kinase (MAPK) signal transduction pathways. This pathway is known as pivotal in many signaling networks that govern proliferation, differentiation and cell survival. The ERK signaling pathway comprises positive and negative feedback loops, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. In this paper, we attempt to model the ERK pathway by considering both of the positive and negative feedback mechanisms based on Michaelis-Menten kinetics. In addition, we propose a fraction ratio model based on the mass action law. We first develop a mathematical model of the ERK pathway with fraction ratios. Secondly, we analyze the dynamical properties of the fraction ratio model based on simulation studies. Furthermore, we propose a concept of an inhibitor, catalyst, and substrate (ICS) controller which regulates the inhibitor, catalyst, and substrate concentrations of the ERK signal transduction pathway. The ICS controller can be designed through dynamical analysis of the ERK signaling transduction pathway within limited concentration ranges.
Cite
Citations (0)
Monitoring of the inhibition of TNF-α, IL-6, iNOS and NO is used to effectively evaluate anti-inflammatory drugs. Baicalein was found to have good anti-inflammatory activities, but its detailed cellular pharmacodynamic events have not been expatiated by any other study. The inflammatory mediators, including TNF-α, IL-6, iNOS and NO production in RAW264.7 macrophage induced by LPS, were measured. It was found that these data showed a sequential pattern on time and based on these points a cellular pharmacodynamic model was developed and tested. TNF-α and IL-6 were quantified by ELISA, NO was detected by Griess and iNOS expression was measured by Western blot. The pharmacodynamic model was developed using a NLME modeling program Monolix® 2016R1. The results showed that baicalein quickly suppressed release of TNF-α in a concentration-dependent manner, and consequently causing the diminution of IL-6 and iNOS/NO. The pharmacodynamic model simulation successfully described the experimental data, supporting the hypothesis that IL-6 and iNOS /NO release after LPS stimulation is mediated by TNF-α rather than LPS directly. The pharmacodynamic model allowed a well understanding of the cellular pharmacodynamic mechanism of baicalein in the treatment of inflammatory diseases.
Baicalein
Pharmacodynamics
Anti-inflammatory
Cite
Citations (22)
A baicalein from baicalin by enzyme reaction was separated and purified with the method of aether crystallization.The product from enzyme reaction is identified to be baicalein in the TLC method.The yield of the puified baicalein is 88.6%.The purity of baicalein is about 93% in the HPLC.
Baicalein
Baicalin
Cite
Citations (0)
Baicalein is the main active compound of Scutellaria baicalensis Georgi, a medicinal herb with multiple pharmacological activities, including the broad anti-virus effects. In this paper, the preclinical study of baicalein on the treatment of COVID-19 was performed. Results showed that baicalein inhibited cell damage induced by SARS-CoV-2 and improved the morphology of Vero E6 cells at a concentration of 0.1 μM and above. The effective concentration could be reached after oral administration of 200 mg/kg crystal form β of baicalein in rats. Furthermore, baicalein significantly inhibited the body weight loss, the replication of the virus, and relieved the lesions of lung tissue in hACE2 transgenic mice infected with SARS-CoV-2. In LPS-induced acute lung injury of mice, baicalein improved the respiratory function, inhibited inflammatory cell infiltration in the lung, and decreased the levels of IL-1β and TNF-α in serum. In conclusion, oral administration of crystal form β of baicalein could reach its effective concentration against SARS-CoV-2. Baicalein could inhibit SARS-CoV-2-induced injury both in vitro and in vivo. Therefore, baicalein might be a promising therapeutic drug for the treatment of COVID-19.
Baicalein
Scutellaria
Cite
Citations (136)
The metabolites of baicalein in human plasma were investigated after taking baicalein, which is one of the main bioactive flavones in Scutellaria baicalensis Georgi. Five metabolites (M1-M5) together with the parent drug baicalein (P) were detected and identified by the HPLC-diode-array detector (DAD) and LC-MS/MS methods. Among them, 7-methoxybaicalein 6-O-glucuronide (M5) is a new metabolite. Based on the results, the proposed metabolic pathway of baicalein in humans was inferred.
Baicalein
Flavones
Glucuronide
Baicalin
Scutellaria
Biotransformation
Metabolic pathway
Cite
Citations (21)