logo
    Rapid Quantitative Analysis of Metabolites in Kimchi Using LC-Q-Orbitrap MS
    5
    Citation
    32
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Kimchi is a traditional Korean salted spontaneous lactic acid bacteria (LAB)-fermented food made using various vegetables. Organic acids, free sugars, and amino acids are key metabolites produced during LAB fermentation that determine the taste and quality of kimchi. However, each metabolite is typically analyzed using an independent analytical method, which is time-consuming and expensive. Therefore, in this study, we developed a method based on LC-Q-Orbitrap MS using which 20 types of representative fermented kimchi metabolites were selected and simultaneously analyzed within 10 min. The established method was validated, and its detection and quantification limits, linearity, precision, and accuracy were found to satisfy the Association of Official Agricultural Chemists (AOAC) validation guidelines. The 20 metabolites were simultaneously extracted from kimchi with different degrees of fermentation and quantitatively analyzed using LC-Q-Orbitrap MS. These results were analyzed using linear discriminant analysis and heat mapping, and the metabolites were grouped into early, middle, and late stages of fermentation. Malic acid (6.518-7.701 mMol) was only present in the initial stage of fermentation, and l-phenylalanine rapidly increased from the middle stage (2.180 mMol) to late stage (4.770 mMol). Lactic acid, which is representative of the sour taste of kimchi, was detected in the middle stage and increased rapidly up to 74.452 mMol in the late stage. In summary, in this study, 20 major kimchi metabolites were accurately analyzed within 10 min and grouped based on the degree of fermentation. Therefore, the method established in this study accurately and rapidly provides information on kimchi consumption and fermentation that could be highly valuable to the kimchi industry and kimchi consumers.
    Keywords:
    Orbitrap
    Malic acid
    Using a newly developed dual-cell quadrupole linear ion trap−orbitrap hybrid mass spectrometer (dcQLT−orbitrap), we demonstrate the utility of collecting high-resolution tandem mass spectral data for large-scale shotgun proteomics. Multiple nanoLC−MS/MS experiments on both an older generation quadrupole linear ion trap−orbitrap hybrid (QLT−orbitrap) and the dcQLT−orbitrap, using both resonant-excitation CAD and beam-type CAD (HCD), were performed. Resulting from various technological advances (e.g., a stacked ring ion guide AP inlet, a dual cell QLT), the dcQLT−orbitrap exhibited increased duty cycle (∼1.5−2 times) and sensitivity for both CAD (ion trap detection) and HCD (orbitrap detection) methods. As compared to the older system, the dcQLT−orbitrap produced significantly more unique peptide identifications for both methods (∼30% improvement for CAD and ∼115% improvement for HCD). The sizable improvement of the HCD method on the dcQLT−orbitrap system outperforms the current standard method of CAD with ion trap detection for large-scale analysis. Finally, we demonstrate that the increased HCD performance translates to a direct and substantial improvement in protein quantitation precision using isobaric tags.
    Orbitrap
    Quadrupole ion trap
    Hybrid mass spectrometer
    DART ion source
    Citations (46)
    Orbitrap: 20 лет спустя Рассказывает директор по глобальным исследованиям в области масс-спектрометрии для наук о жизни компании Thermo Fisher Scientific, профессор Утрехтского университета к.ф.-м.н.Александр Алексеевич Макаров Июль 1999 года, ежегодное заседание Американского масс-спектрометрического общества в Далласе.Молодой ученый Александр Макаров докладывает о базовых принципах созданной им масс-спектрометрической ловушки Orbitrap.Вряд ли многие из его слушателей могли предположить, что присутствуют на историческом событии, а технологии Orbitrap суждено изменить облик не только масс-спектрометрии, но и связанных с ней наук -протеомики, метаболомики и др.Прошло 20 лет, и сегодня многие направления исследований невозможно представить без масс-спектрометров с ловушкой Orbitrap.Что нового в семействе приборов Orbitrap, каково их влияние на развитие науки?Никто не расскажет об этом лучше, чем сам создатель Orbitrap, Александр Алексеевич Макаров.Александр Алексеевич, 20 лет -немалый срок в жизни Orbitrap.Можно подводить итоги?Действительно, 20 лет -достаточно длинный путь от рождения первого прототипа до многих тысяч проданных серийных приборов.Первый прототип Orbitrap был создан в малой фирме HD Technologies в Манчестере.Я был одним из ее четырех сотрудников, мы занимались контрактной разработкой времяпролетного массспектрометра (ВПМС) для анализа пептидов.А в свободное от основной работы время создавали Orbitrap, чему способствовали средства выигранного нами гранта (50 тыс.фунтов стерлингов) Министерства торговли и промышленности Великобритании.По возможности использовали старые детали.Источником ионов служил азотный лазер, выбивавший из подложки из нержавеющей стали ионы железа, которые затем инжектировались в анализатор.Первый масс-спектрометр (МС) в октябре 1988 года показал разрешение по массе 47 тыс.и точность на уровне 12 ppm -совершенно неприемлемо по сегодняшним меркам, но тогда это выглядело весьма впечатляюще.В 1999 году нам удалось повысить разрешение до 150 тыс.и массовый диапазон до 1000 Да.Эти результаты я и доложил 20 лет назад на ежегодной сессии Американского масс-спектрометрического общества (ASMS) в Далласе.Тогда сразу все пошло наперекосяк.Не работал микрофон, и я пытался перекричать шум кондиционеров.Мои слайды коробились от жара про-
    Orbitrap
    We discuss the evolution of Orbitrap mass spectrometry (MS) from its birth in the late 1990s to its current role as one of the most prominent techniques for MS. The Orbitrap mass analyzer is the first high-performance mass analyzer that employs trapping of ions in electrostatic fields. Tight integration with the ion injection process enables the high-resolution, mass accuracy, and sensitivity that have become essential for addressing analytical needs in numerous areas of research, as well as in routine analysis. We examine three major families of instruments (related to the LTQ Orbitrap, Q Exactive, and Orbitrap Fusion mass spectrometers) in the context of their historical development over the past ten eventful years. We discuss as well future trends and perspectives of Orbitrap MS. We illustrate the compelling potential of Orbitrap-based mass spectrometers as (ultra) high-resolution platforms, not only for high-end proteomic applications, but also for routine targeted analysis.
    Orbitrap
    Instrumentation
    Mass spectrometry imaging
    Molecular composition of dissolved organic matter (DOM) is a hot topic in subjects such as environmental science and geochemistry. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been applied to molecular composition characterization of DOM successfully. However, high instrument and maintenance costs have constrained its wider application. A high-resolution Orbitrap mass spectrometer (Orbitrap MS) can provide approximately 500,000 resolving power (at m/z 200), which is potentially capable of characterizing the molecular composition of DOM. In this paper, the application of high-resolution Orbitrap MS was evaluated by comparing with FT-ICR MS in the aspect of resolution, mass distribution, detection dynamic range, and isotopic peak intensity ratio. The impact of instrument parameters of Orbitrap MS was further investigated, which includes ionization, ion transfer, and mass detection. The result shows that the high-resolution Orbitrap MS is capable or even preferable for molecular characterization of DOM. However, the peak intensity distributions are dependent on the instrument parameters, which could affect the environmental impact assessment caused by the sample itself. The result indicates that development of a universal and comparable method is of great demand.
    Orbitrap
    Characterization
    Citations (68)