Künstliche Intelligenz auf dem Vormarsch – Hohe Vorhersage-Genauigkeit bei der Früherkennung pigmentierter Melanome
0
Citation
27
Reference
10
Related Paper
Abstract:
The incidence of malignant melanoma is increasing worldwide. If detected early, melanoma is highly treatable, so early detection is vital.Skin cancer early detection has improved significantly in recent decades, for example by the introduction of screening in 2008 and dermoscopy. Nevertheless, in particular visual detection of early melanomas remains challenging because they show many morphological overlaps with nevi. Hence, there continues to be a high medical need to further develop methods for early skin cancer detection in order to be able to reliably diagnosemelanomas at a very early stage.Routine diagnostics for melanoma detection include visual whole body inspection, often supplemented by dermoscopy, which can significantly increase the diagnostic accuracy of experienced dermatologists. A procedure that is additionally offered in some practices and clinics is wholebody photography combined with digital dermoscopy for the early detection of malignant melanoma, especially for monitoring high-risk patients.In recent decades, numerous noninvasive adjunctive diagnostic techniques were developed for the examination of suspicious pigmented moles, that may have the potential to allow improved and, in some cases, automated evaluation of these lesions. First, confocal laser microscopy should be mentioned here, as well as electrical impedance spectroscopy, multiphoton laser tomography, multispectral analysis, Raman spectroscopy or optical coherence tomography. These diagnostic techniques usually focus on high sensitivity to avoid malignant melanoma being overlooked. However, this usually implies lower specificity, which may lead to unnecessary excision of benign lesions in screening. Also, some of the procedures are time-consuming and costly, which also limits their applicability in skin cancer screening. In the near future, the use of artificial intelligence might change skin cancer diagnostics in many ways. The most promising approach may be the analysis of routine macroscopic and dermoscopic images by artificial intelligence.For the classification of pigmented skin lesions based on macroscopic and dermoscopic images, artificial intelligence, especially in form of neural networks, has achieved comparable diagnostic accuracies to dermatologists under experimental conditions in numerous studies. In particular, it achieved high accuracies in the binary melanoma/nevus classification task, but it also performed comparably well to dermatologists in multiclass differentiation of various skin diseases. However, proof of the basic applicability and utility of such systems in clinical practice is still pending. Prerequisites that remain to be established to enable translation of such diagnostic systems into dermatological routine are means that allow users to comprehend the system's decisions as well as a uniformly high performance of the algorithms on image data from other hospitals and practices.At present, hints are accumulating that computer-aided diagnosis systems could provide their greatest benefit as assistance systems, since studies indicate that a combination of human and machine achieves the best results. Diagnostic systems based on artificial intelligence are capable of detecting morphological characteristics quickly, quantitatively, objectively and reproducibly, and could thus provide a more objective analytical basis - in addition to medical experience.Weltweit steigt die Inzidenz des malignen Melanoms an. Bei frühzeitiger Erkennung ist das Melanom gut behandelbar, eine Früherkennung ist also lebenswichtig.Die Hautkrebs-Früherkennung hat sich in den letzten Jahrzehnten bspw. durch die Einführung des Screenings im Jahr 2008 und die Dermatoskopie deutlich verbessert. Dennoch bleibt die visuelle Erkennung insbesondere von frühen Melanomen eine Herausforderung, weil diese viele morphologische Überlappungen mit Nävi zeigen. Daher ist der medizinische Bedarf weiterhin hoch, die Methoden zur Hautkrebsfrüherkennung gezielt weiterzuentwickeln, um Melanome bereits in einem sehr frühen Stadium sicher diagnostizieren zu können.Die Routinediagnostik zur Hautkrebs-Früherkennung umfasst die visuelle Ganzkörperinspektion, oft ergänzt durch die Dermatoskopie, durch die sich die diagnostische Treffsicherheit erfahrener Hautärzte deutlich erhöhen lässt. Ein Verfahren, was in einigen Praxen und Kliniken zusätzlich angeboten wird, ist die kombinierte Ganzkörperfotografie mit der digitalen Dermatoskopie für die Früherkennung maligner Melanome, insbesondere für das Monitoring von Hochrisiko-Patienten.In den letzten Jahrzenten wurden zahlreiche nicht invasive zusatzdiagnostische Verfahren zur Beurteilung verdächtiger Pigmentmale entwickelt, die das Potenzial haben könnten, eine verbesserte und z. T. automatisierte Bewertung dieser Läsionen zu ermöglichen. In erster Linie ist hier die konfokale Lasermikroskopie zu nennen, ebenso die elektrische Impedanzspektroskopie, die Multiphotonen-Lasertomografie, die Multispektralanalyse, die Raman-Spektroskopie oder die optische Kohärenztomografie. Diese diagnostischen Verfahren fokussieren i. d. R. auf hohe Sensitivität, um zu vermeiden, ein malignes Melanom zu übersehen. Dies bedingt allerdings üblicherweise eine geringere Spezifität, was im Screening zu unnötigen Exzisionen vieler gutartiger Läsionen führen kann. Auch sind einige der Verfahren zeitaufwendig und kostenintensiv,was die Anwendbarkeit im Screening ebenfalls einschränkt.In naher Zukunft wird insbesondere die Nutzung von künstlicher Intelligenz die Diagnosefindung in vielfältiger Weise verändern. Vielversprechend ist v. a. die Analyse der makroskopischen und dermatoskopischen Routine-Bilder durch künstliche Intelligenz. Für die Klassifizierung von pigmentierten Hautläsionen anhand makroskopischer und dermatoskopischer Bilder erzielte die künstliche Intelligenz v. a. in Form neuronaler Netze unter experimentellen Bedingungen in zahlreichen Studien bereits eine vergleichbare diagnostische Genauigkeit wie Dermatologen. Insbesondere bei der binären Klassifikationsaufgabe Melanom/Nävus erreichte sie hohe Genauigkeiten, doch auch in der Multiklassen-Differenzierung von verschiedenen Hauterkrankungen zeigt sie sich vergleichbar gut wie Dermatologen. Der Nachweis der grundsätzlichen Anwendbarkeit und des Nutzens solcher Systeme in der klinischen Praxis steht jedoch noch aus. Noch zu schaffende Grundvoraussetzungen für die Translation solcher Diagnosesysteme in die dermatologischen Routine sind Möglichkeiten für die Nutzer, die Entscheidungen des Systems nachzuvollziehen, sowie eine gleichbleibend gute Leistung der Algorithmen auf Bilddaten aus fremden Kliniken und Praxen.Derzeit zeichnet sich ab, dass computergestützte Diagnosesysteme als Assistenzsysteme den größten Nutzen bringen könnten, denn Studien deuten darauf hin, dass eine Kombination von Mensch und Maschine die besten Ergebnisse erzielt. Diagnosesysteme basierend auf künstlicher Intelligenz sind in der Lage, Merkmale schnell, quantitativ, objektiv und reproduzierbar zu erfassen, und könnten somit die Medizin auf eine mathematische Grundlage stellen – zusätzlich zur ärztlichen Erfahrung.Cite
Citations (34)
Cite
Citations (0)
Genentech is partnering with the German cancer company Affimed to develop immunotherapies for multiple kinds of solid and blood cancers. Affimed is developing therapies that engage natural killer cells of the innate immune system to help direct them to attack cancer cells. Genentech will pay Affimed $96 million up front and up to $5 billion more in potential payments.
Cite
Citations (0)
Cite
Citations (14)
Cite
Citations (0)
PT. Ajinomoto Indonesia Mojokerto Factory perusahaan yang bergerak dibidang industri yang menghasilkan produk berupa makanan, dalam proses produksinya selalu mengalami adanya produk yang tidak sesuai dengan standar yang ditentukan oleh perusahaan. Dalam hal ini adalah adanya produk rusak. Penyebab terjadinya produk rusak yaitu adanya keterbatasan kemampuan mesin terhadap pelaksanaan proses produksi. Produk rusak mengakibatkan kenaikan biaya produksi atau harga pokok produk, karena itu tidak boleh dipandang sebagai masalah kecil.
Tujuan dari penelitian ini adalah untuk mengetahui perlakuan akuntansi produk rusak pada PT. Ajinomoto Indonesia Mojokerto Factory. Penelitian ini menggunakan pendekatan kualitatif deskriptif untuk menggambarkan perlakuan akuntansi produk rusak. Data diperoleh melalui observasi dan dokumentasi.
Hasil penelitian menunjukkan bahwa PT. Ajinomoto Indonesia Mojokerto Factory didapati adanya produk rusak yang bersifat normal laku dijual, produk rusak bersifat normal tidak laku dijual, produk rusak bersifat abnormal laku dijual, dan produk rusak bersifat abnormal tidak laku dijual. Perlakuan akuntansi terhadap produk rusak yaitu perusahaan memperlakukan produknya untuk dikembalikan ke proses awal untuk diproduksi kembali, dan produk rusak yang laku dijual yaitu hasil penjualan dari produk rusak tersebut dianggap sebagai pendapatan lain-lain. Saran yang dapat disampaikan oleh peneliti ialah perusahaan harus melakukan pengecekan rutin pada mesin agar dapat meminimalisir terjadinya produk rusak.
Kata kunci: Perlakuan akuntansi, Produk rusak
Cite
Citations (0)
Angin merupakan sumber energi yang sangat melimpah yang merupakan
sumber energi terbarukan. Salah satu bentuk memanfaatkan energi angin adalah
dengan menggunakan turbin angin. Namun, komponen pada turbin angin sering
mengalami kerusakan, salah satunya kerusakan yang terjadi pada bantalan. Peran
bantalan sangat penting dalam menjaga performa pada sebuah mesin. Bantalan
yang rusak akan berdampak pada penurunan kinerja dari kincir angin. Penelitian
deteksi rusak bantalan sudah banyak dilakukan pada mesin-mesin rotary,
sedangkan deteksi rusak bantalan pada kincir angin masih sangat minim
dilakukan. Oleh karena itu, tujuan dari penelitian ini adalah untuk mendeteksi
rusak bantalan secara dini pada kincir angin menggunakan analisis getaran dengan
menerapkan fitur spektrum frekuensi dan analisis envelope.
Penelitian ini menggunakan bantalan kondisi normal dan bantalan rusak
jamak (multi-faults) yang dirusak secara sengaja dengan ukuran rusak kedalaman
(deep) bantalan sebesar 2 mm dan rusak pada lebar bantalan sebesar 0.7 mm.
Rusak jamak (multi-faults) yaitu rusak pada lintasan luar dan lintasan dalam yang
dirusak secara bersamaan dan deteksi rusak bantalan dilakukan menggunakan
analisis spektrum envelope. Pengukuran dilakukan dengan menggunakan motor
penggerak sebagai simulasi angin dengan kecepatan poros 1200 RPM. Bantalan
yang digunakan adalah Self Aligning Double Row, Merk TAM, Seri 1208K .
Spektrum frekuensi tidak menunjukan amplitudo frekuensi rusak pada
bantalan, akan tetapi ada amplitudo frekuensi tinggi dari kecepatan putar poros.
Spektrum frekuensi pada rusak bantalan menunjukan adanya frekuensi rusak
bantalan lintasan luar dan lintasan dalam yang di ikuti 1X sampai 3X
harmoniknya. Akan tetapi, amplitudo frekuensi rusak bantalan masih rendah dan
tertutupi oleh frekuensi komponen lain. Metode envelope dapat mengekstrak
impak dengan energi yang sangat rendah dan memunculkan amplitudo frekuensi
rusak pada bantalan. Sehingga, identifikasi rusak bantalan akan terlihat sangat
jelas dengan munculnya frekuensi dari rusak bantalan lintasan luar dan dalam
yang di ikuti 1X sampai 3X harmoniknya.
Cite
Citations (0)
Бұл зерттеужұмысындaКaно моделітурaлы жәнеоғaн қaтыстытолықмәліметберілгенжәнеуниверситетстуденттерінебaғыттaлғaн қолдaнбaлы (кейстік)зерттеужүргізілген.АхметЯссaуи университетініңстуденттеріүшін Кaно моделіқолдaнылғaн, олaрдың жоғaры білімберусaпaсынa қоятынмaңыздытaлaптaры, яғнисaпaлық қaжеттіліктері,олaрдың мaңыздылығытурaлы жәнесaпaлық қaжеттіліктерінеқaтыстыөз университетінқaлaй бaғaлaйтындығытурaлы сұрaқтaр қойылғaн. Осы зерттеудіңмaқсaты АхметЯсaуи университетіндетуризмменеджментіжәнеқaржы бaкaлaвриaт бaғдaрлaмaлaрыныңсaпaсынa қaтыстыстуденттердіңқaжеттіліктерінaнықтaу, студенттердіңқaнaғaттaну, қaнaғaттaнбaу дәрежелерінбелгілеу,білімберусaпaсын aнықтaу мен жетілдіружолдaрын тaлдaу болыптaбылaды. Осы мaқсaтқaжетуүшін, ең aлдыменКaно сaуaлнaмaсы түзіліп,116 студенткеқолдaнылдыжәнебілімберугежәнеоның сaпaсынa қaтыстыстуденттердіңтaлaптaры мен қaжеттіліктерітоптықжұмыстaрaрқылыaнықтaлды. Екіншіден,бұл aнықтaлғaн тaлaптaр мен қaжеттіліктерКaно бaғaлaу кестесіменжіктелді.Осылaйшa, сaпa тaлaптaры төрт сaнaтқa бөлінді:болуытиіс, бір өлшемді,тaртымдыжәнебейтaрaп.Соңындa,қaнaғaттaну мен қaнaғaттaнбaудың мәндеріесептелдіжәнестуденттердіңқaнaғaттaну мен қaнaғaттaнбaу деңгейлерінжоғaрылaту мен төмендетудеосытaлaптaр мен қaжеттіліктердіңрөліaйқын aнықтaлды.Түйінсөздер:сaпa, сaпaлық қaжеттіліктер,білімберусaпaсы, Кaно моделі.
Cite
Citations (0)
The nationally-recognized Susquehanna
Chorale will delight audiences of all
ages with a diverse mix of classic and
contemporary pieces. The ChoraleAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA¢AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂs
performances have been described
as AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA¢AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂemotionally unfiltered, honest
music making, successful in their
aim to make the audience feel,
to be moved, to be part of the
performance - and all this while
working at an extremely high
musical level.AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA¢AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA Experience choral
singing that will take you to new
heights!
Cite
Citations (0)