logo
    The fly ash was modified by Cl, Fe, Cu salts to investigate the mercury adsorption performance and analyze the impacts on it. Experiment results indicate that significant improvement of removal efficiencies with FeCl 3 、CuCl 2 and CuBr 2 impregnation onto fly ash. The modification adjusted the pore structure of fly ash and formed more pores to absorb Hg, also it was found that new active sites were generated after the treatment, which can oxidize Hg 0 and improve chemical adsorption.
    Mercury
    On the fly
    Elemental mercury
    For the one-sidedness of classification of fly ash in the past,the chemical composition and physical properties related to the quality of fly ash are choiced as the feature vectors.Then,classification of fly ash is proposed based on support vector machine at this paper.The result shows that the SVM method is not only simple in structure,but also has markedly improved in technical performance and generalization ability,especially compared with the neural network.It reflects more comprehensive the activity of fly ash,and lays a foundation for the utilization of fly ash so as to optimize the distribution.
    On the fly
    Feature (linguistics)
    Citations (0)
    In this paper,the container wall sorption percentage and the sorption ratio of Am betweensolution and such sorption materials as bentonite are studied with the HPGe detector connected-with S-85 multichannel system,the influence of container wall sorption on sorption ratio also isdiscussed.The results show that the container wall sorption with solid sorptive materials is lowerthan that without solid sorptive materials. The container wall sorption should be considered forthe sorptive materials with low sorption ratio values and can be neglected for those with highsorption ratio values.
    Bentonite
    Citations (0)
    Flyash is a fine and dispersed powder discharged from power station a fter the coal being burned. With the deepening of people's recognition about the pollution problem of fly ash, the ways of utilizing fly ash are gradually incre asing. Utilizing value of fly ash is closely related to the unburned carbon cont ent.On the basis of analysis of modern testing method,a fundamental thinking I stheoretically posed for decreasing unburned carbon content from fly ash by a d ry removing carbon technology. The triboelectric separation method shown that the above-mentioned thinking of dry removing carbon from fly ash is practical.
    On the fly
    Carbon fibers
    Citations (0)
    The significance of extracting alumina from fly ash is elucidated.The physical and chemical properties of fly ash and the latest achievements of the research of extracting alumina from fly ash are introduced.And the advantages and disadvantages of the new processes are analyzed.
    On the fly
    Citations (0)
    This paper introduces the physical and chemica l properties of fly-ash. Taking its advantages in environmental protection and ec onomic aspects in consideration the proper uses of fly-ash in concrete are elab orated in order to provide theoretical references for the application of fly-ash.
    On the fly
    Citations (0)
    The sorption kinetics and isotherms of BDE-28 on three natural soils with different soil organic matter fractions (f(oc)) were investigated. The results indicated that a two (fast and slow)-compartment first-order model was more appropriate for describing the sorption kinetic data, compared to a one-compartment first-order model, especially in the initial sorption stage within 25 h. The fast sorption was predominant during the whole sorption process from beginning to the apparent sorption equilibrium; while the contribution of the slow sorption to the total sorption amount gradually increased and then achieved a plateau at 49 h or 55 h. The approaching time to the individual sorption capacity for the fast sorption was much shorter than that for the slow sorption. The contribution of the fast sorption to the increase in the total sorption amount of BDE-28 was prevailing at the beginning of sorption process from 2.5 h to 4.5 h; whereas the fraction of the slow sorption became primary at the subsequent stage of sorption process. The fitting results by the Dubinin-Ashtakhov (DA) model were comparable with those by the Freundlich model in the range of apparent equilibrium concentration studied. As for the Freundlich model, the nonlinear exponent (n) values of BDE-28 for the two samples with lower f(oc) (0.72%) or higher f(oc) (7.90%) approached to 1.0 (1.03 +/- 0.05 and 1.00 +/- 0.05, respectively), suggesting the linear sorption characteristics in the studied range of apparent equilibrium concentrations of BDE-28; while the nonlinear behavior of BDE-28 for the left sample with medium f(oc) (4.42%) was indicated by its n value less than 1.0 (0.89 +/- 0.04).
    Citations (2)
    A quantitative understanding of the efficiency of fly ash as a mineral admixture in cement-based materials is essential for its effective utilisation. The present paper is directed towards a specific understanding of the efficiency of fly ash in cementitious materials systems by considering the independency of fly ash and its dependency on the characteristics of the cementitious materials system. A new method of quantitatively evaluating the strength effect of fly ash is proposed, in which two parameters, the strength-effect index and the strengthening factor, are employed to study strength development in fly ash mortars and concretes and to further analyse the influences of water to binder ratio (w/b) and the replacement amount of fly ash on strength. Results indicate that the strength effect of fly ash in mortar systems is different from that in concrete; the strength effect of fly ash varies with both amount of fly ash and w/b. Furthermore, in a concrete system, two different optimal w/b ratios are used to maximise the strength-effect index and the strengthening factor of fly ash, respectively. An optimum amount of fly ash exists for an optimal unit strength-effect index in concrete. It is shown that the method presented in this paper is reasonable and effective in assessing the efficiency of fly ash. This information will strengthen the effective utilisation of fly ash in cementitious materials and design of fly ash concrete.
    Cementitious