Numerical prediction of the effect of thermal plume of a standing human on the airborne aerosol flow in a room Assessment of the social distancing rule
0
Citation
23
Reference
10
Related Paper
Abstract:
Abstract Purpose: The purpose of the study is to investigate the dispersion of droplet nuclei/aerosol which are produced during coughing and continuous talking in order to quantify the risk of infection due to airborne disease transmission. Methods: A three-dimensional modelling of aerosol transport due to human respiratory activities such as coughing and talking within a room environment has been simulated using CFD technique. An inert scalar transport equation was used to represent aerosol cloud, while turbulence was modelled with the \(k-ϵ\) turbulence model. A modified Wells-Riley equation was used to calculate the risk of infection based on quanta emission concept. Results The spatial and temporal distribution of aerosol cloud within the room is initially driven by the upward flowing thermal plume surrounding the human, but later driven by the flow field constrained by the walls and cooler air movement. While the cough generated aerosols are concentrated in a smaller space within the room, the continuous talk generated aerosols are distributed throughout the room. Conclusion Within an indoor environment, 2m distancing will not be enough to protect healthy people from aerosols coming from an infected person due to continuous talking with prolonged exposure.A monoethanolamine (MEA) aerosol growth model was developed to quantify the aerosol growth factor in an amine-based CO2 capture absorber that considers the gas-liquid interactions, and it is empirically validated by measuring the aerosol particle size and concentration. The aerosol growth model, using sucrose as the aerosol nuclei instead of sulfuric acid to prevent the corrosion of the test equipment, accurately predicted that the outlet aerosol size increased to the same level regardless of the sucrose concentration. It also found that particle concentration was the primary factor affecting aerosol growth and amine emissions. We found an inverse relationship between aerosol particle concentration and the aerosol size, while the MEA emissions were proportional to particle concentration.
Particle (ecology)
Cite
Citations (6)
Water circulation
Panache
Cite
Citations (1)
Abstract. We introduce and evaluate aerosol simulations with the global aerosol–climate model ECHAM6.3–HAM2.3, which is the aerosol component of the fully coupled aerosol–chemistry–climate model ECHAM–HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free-running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between the model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse-mode aerosol concentrations to some extent so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM–HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol–climate interactions in a changing climate.
Sea salt aerosol
Sulfate aerosol
Cite
Citations (216)
A general purpose aerosol conditioning device called the Universal Aerosol Conditioner (UAC) has been designed and tested. The device may be used to condition an aerosol in multiple ways: dilute the entire aerosol (gas- and particle-phase), dilute only a gas-phase component of the aerosol without diluting the particle concentration, denude the aerosol by removing semi-volatile material from the particle phase, and humidify or dehumidify an aerosol. The UAC accomplishes these processes by bringing the aerosol into contact with sheath air and allowing enough time for gas-phase components of the aerosol to diffuse into the sheath flow. A model was developed to assess the theoretical performance of the UAC and was solved numerically. From the model it was determined that two parameters dictated the rate of diffusion between the two flows: the Péclet number and the ratio of sheath-to-aerosol flow rates. A prototype was designed and built and the theory of operation was experimentally validated by measuring the particle penetration efficiency and the gas dilution factor at various particle sizes and flow conditions. The results showed that at low aerosol and sheath flows, the prototype behaved closely to the theoretical model but diverged from the theory once the sheath flows were increased, presumably due to mixing between the two flows.Copyright © 2022 American Association for Aerosol Research
Particle (ecology)
Dilution
Cite
Citations (1)
A modified simple integral model for plume behavior from finite length line sources of heat and momentum is presented that identifies observed trends in plume trajectory data. Experiments on several finite length line sources of heat and momentum in the form of elevated (rows of stacks) and surface (slot) releases were conducted in a water tunnel. Plume behavior was documented through detailed temperature measurements of the plume cross section and by photographing the dyed plume. Results indicate the nature of any plume trajectory and growth enhancement and confirm the empirical relation for the liftoff distance for a buoyant surface plume given by Meroney (1979). In addition to the liftoff distance, the shape of the plume contact zone was measured and related to various regions of plume trajectory and cross-sectional shape. Plume trajectories from elevated line releases are adequately predicted by standard single source formulations; however, plume cross-sectional area is significantly overpredicted
Momentum (technical analysis)
Line (geometry)
Panache
Cite
Citations (3)
ABSTRACT Aim The purpose of the study was to determine aerosol exposure generated by coughing in operation room environments to create a quantitative limit value for high-risk aerosol-generating medical procedures. Background Coughing is known to produce a significant amount of aerosols and is thus commonly used as a best reference for high-risk aerosol-generation. Accordingly, procedures during which aerosol generation exceeds the amount of aerosol generated in instances of coughing are seen as high-risk aerosol generating procedures. However, no reliable quantitative values are available for high-risk aerosol-generation. Methods Coughing was measured from 37 healthy volunteers in the operating room environment. Aerosol particles generated during coughing within the size range of 0.3–10 µm were measured with Optical Particle Sizer from 40cm, 70cm, and 100cm distances. The distances reflected potential exposure distances where personnel are during surgeries. Results A total of 306 coughs were measured. Average aerosol concentration during coughing was 1.580 ± 13.774 particles/cm 3 (range 0.000 – 195.528). Discussion The aerosol concentration measured in this study can be used as a limit for high-risk aerosol generation in the operating room environment when assessing the aerosol generating procedures and the risk of operating room staff’s exposure for aerosol particles.
Particle (ecology)
Cite
Citations (3)
In this study, a monoethanolamine aerosol growth model was developed to investigate the aerosol growth factor. Interactions among the internal conditions in an absorber were considered in this aerosol model. Additionally, an experiment was conducted to measure aerosol particle size, for collecting in-house validation data. Sucrose was used as the aerosol nuclei instead of sulfuric acid to prevent the corrosion of equipment used in the experiment. Experimental results showed that the outlet aerosol sizes increased to the same size regardless of the sucrose concentrations. The aerosol growth model was validated using the in-house experimental data. The aerosol growth model efficiently predicted the aerosol size. For investigating aerosol growth effects, particle number concentration was determined to be the primary factor affecting aerosol growth and amine emissions. When the particle number concentration increased, the aerosol size decreased, whereas the MEA emission increased.
Particle (ecology)
Cite
Citations (1)
Abstract. We introduce and evaluate the aerosol simulations with the global aerosol-climate model ECHAM6.3-HAM2.3, which is the aerosol component of the fully coupled aerosol-chemistry-climate model ECHAM-HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse mode aerosol concentrations to some extent, so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM-HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol-climate interactions in a changing climate.
Sea salt aerosol
Sulfate aerosol
Cite
Citations (8)
We present a method to assess the behavior of aerosol nanoparticles as a function of time and of selected aerosol chamber and environmental conditions upon exposure to polydisperse silicon dioxide (SiO2) aerosol nanoparticles (NPs). Through synthesis of SiO2 aerosol NPs, a well-controlled, stable source of aerosol NPs was used to probe aerosol behavior in an enclosed aerosol chamber. This paper describes a procedure to interface an aerosol chamber downstream of a SiO2 aerosol NP reactor that is capable of synthesizing SiO2 NPs with particle diameters from 10 to 100 nm at particle concentrations of approximately 10(4) to 10(7) particles/cm3. This paper also describes the relative impact on aerosol and aerosol chamber variables, such as chamber volume, the entering aerosol NP size distribution, and environmental parameters, such as relative humidity and ambient particle concentrations, on the observed changes in aerosol NPs over time under unmixed conditions. These findings provide insights into aerosol NP behavior under ideal, well-controlled conditions which can be further refined to include more occupationally relevant conditions that would be important for establishing guidance on suitable workplace containment and controls.
Aerosolization
Particle (ecology)
Particle counter
Cite
Citations (2)
The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.
Hotspot (geology)
Containment (computer programming)
Panache
Cite
Citations (0)