logo
    Apparent Footpoint Rotation and Writhe of Double Hot Channels in a Solar Flare
    3
    Citation
    66
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract We investigate the M6.5 class flare (SOL2015-06-22T18:23) occurring in NOAA Active Region 12371 on 2015 June 22. This eruptive flare is associated with a halo coronal mass ejection with a speed of 1200 km s −1 . The 94 Å observations by Atmospheric Image Assembly onboard Solar Dynamics Observatory show that one hot channel first rises up, then forms a kinking structure with negative crossing and erupts, which is followed by the eruption of another kinking hot channel with negative crossing at a similar location between the start and peak times of the flare. Consistent with the standard flare model, footpoint drifting of the two hot channels is observed during the eruption. More interestingly, the two footpoints of the first hot channel continue to drift and display an apparent clockwise rotation after leaving the area of the hook-shaped flare ribbons. This apparent rotation is along the high- Q region of the log Q map derived from the nonlinear force-free field extrapolation. Our analysis suggests that the apparent rotational motion is likely caused by magnetic reconnection between the first hot channel and the surrounding magnetic fields at the high- Q region during the unwrithing process. The unwrithing of the second hot channel is accompanied by a significant slipping motion of its right footpoint.
    Keywords:
    Flare
    Solar flare
    Plasmoid
    Field line
    A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (10(4) 10(4).
    Plasmoid
    Resistive touchscreen
    Current sheet
    Our understanding of magnetic reconnection in resistive magnetohydrodynamics has gone through a fundamental change in recent years. The conventional wisdom is that magnetic reconnection mediated by resistivity is slow in laminar high Lundquist (S) plasmas, constrained by the scaling of the reconnection rate predicted by Sweet-Parker theory. However, recent studies have shown that when S exceeds a critical value ∼104, the Sweet-Parker current sheet is unstable to a super-Alfvénic plasmoid instability, with a linear growth rate that scales as S1/4. In the fully developed statistical steady state of two-dimensional resistive magnetohydrodynamic simulations, the normalized average reconnection rate is approximately 0.01, nearly independent of S, and the distribution function f(ψ) of plasmoid magnetic flux ψ follows a power law f(ψ)∼ψ−1. When Hall effects are included, the plasmoid instability may trigger onset of Hall reconnection even when the conventional criterion for onset is not satisfied. The rich variety of possible reconnection dynamics is organized in the framework of a phase diagram.
    Plasmoid
    Current sheet
    Citations (57)
    Abstract Magnetic reconnection, breaking and reorganization of magnetic field topology, is a fundamental process for rapid release of magnetic energy into plasmas that occurs pervasively throughout the universe. In natural circumstances, the plasma properties on either side of the reconnection layer are almost asymmetric, in particular for the collision rates that critically determine the underlying reconnection mechanism. To date, all laboratory experiments on magnetic reconnections have been limited to purely collisional or collisionless regimes. Here, we report a well-designed experimental investigation on magnetic reconnections in a hybrid collisional-collisionless regime by interactions between laser-ablated copper and plastic plasmas. We directly observe the topology evolutions of the whole process of this asymmetric magnetic reconnection by highly-resolved proton radiography. Through this, we show that the growth rate of tearing instability in such a hybrid regime is still extremely large, resulting in rapid formation of multiple plasmoids and generation of plasmoid-dominated current sheet.
    Plasmoid
    Computer simulations study the temporal dynamics of magnetic reconnection in a current sheet system under a continuous local plasma injection imposed on the inflow boundary. The basic reconnection process is strongly influenced by the resistivity model. For a uniform resistivity model, the field lines become flattened with time so that the resulting quasisteady configuration involves a long diffusion region and the reconnection rate strongly depends on the resistivity, in good agreement with the Sweet–Parker mechanism. For an anomalous resistivity model, magnetic reconnection drastically occurs, leading to development of a large-scale plasmoid. Once an effective resistivity is triggered, a quasisteady fast reconnection mechanism spontaneously develops even in the absence of the specified boundary condition, in good agreement with the spontaneous fast reconnection model. When the imposed plasma injection is larger than the one inherent to the spontaneous fast reconnection mechanism, the fast reconnection mechanism can no longer proceed steadily and multiple X points and plasmoids result. It is concluded that it is not the boundary condition that drives the fast reconnection mechanism; the boundary condition may simply initiate the onset of magnetic reconnection (or effective resistivity) but has no essential effect on the fast reconnection development.
    Plasmoid
    Inflow
    Current sheet
    Citations (19)
    Recent experiments have observed magnetic reconnection in laser-produced high-energy-density (HED) plasma bubbles. We perform two-dimensional (2-D) particle-in-cell (PIC) simulations to investigate magnetic reconnection between two approaching HED plasma bubbles. It is found that the expanding velocity of the bubbles has a great influence on the process of magnetic reconnection. When the expanding velocity is small, a single X line reconnection is formed. However, when the expanding velocity is sufficiently large, we can observe a plasmoid in the vicinity of the X line. At the same time, the structures of the electromagnetic field in HED plasma reconnection are similar to that in Harris current sheet reconnection.
    Plasmoid
    Current sheet
    Particle-in-cell
    Line (geometry)
    We study Taylor's model of forced magnetic reconnection mediated by plasma hyper-resistivity. This includes both linear and nonlinear regimes of the process. It is shown how the onset of plasmoid instability occurs in the strongly nonlinear regime of forced reconnection.
    Plasmoid
    Resistive touchscreen
    Citations (4)
    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.
    Plasmoid
    Current sheet
    Astrophysical plasma
    Citations (28)
    Magnetic reconnection is a ubiquitous and fundamental process in plasmas by which magnetic fields change their topology and release magnetic energy. Despite decades of research, the physics governing the reconnection process in many parameter regimes remains controversial. Contemporary reconnection theories predict that long, narrow current sheets are susceptible to the tearing instability and split into isolated magnetic islands (or plasmoids), resulting in an enhanced reconnection rate. While several experimental observations of plasmoids in the regime of low- to intermediate-$\beta$ (where $\beta$ is the ratio of plasma thermal pressure to magnetic pressure) have been made, there is a relative lack of experimental evidence for plasmoids in the high-$\beta$ reconnection environments which are typical in many space and astrophysical contexts. Here, we report the observation of strong experimental evidence for plasmoid formation and dynamics in laser-driven high-$\beta$ reconnection experiments.
    Plasmoid
    BETA (programming language)
    Citations (0)
    Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism which invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images, but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profile observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from 2 active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km s−1. The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterize the plasmoid instability but not by bi-directional jets that characterize the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.
    Plasmoid
    Solar flare
    Line (geometry)
    Kink instability
    Citations (50)
    Recently, magnetic reconnection has been realized in high-energy-density laser-produced plasmas. Plasma bubbles with self-generated magnetic fields are created by focusing laser beams to small-scale spots on a foil. The bubbles expand into each other, which may then drive magnetic reconnection. The reconnection experiment in laser-produced plasmas has also been conducted at Shenguang-II (SG-II) laser facility, and the existence of a plasmoid was identified in the experiment [Dong et al., Phys. Rev. Lett. 108, 215001 (2012)]. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate such a process of magnetic reconnection based on the experiment on SG-II facility, and a possible explanation for the formation of the plasmoid is proposed. The results show that before magnetic reconnection occurs, the bubbles squeeze strongly each other and a very thin current sheet is formed. The current sheet is unstable to the tearing mode instability, and we can then observe the formation of plasmoid(s) in such a multiple X-lines reconnection.
    Plasmoid
    Current sheet
    Citations (16)