logo
    Electronically Conductive Hydrogels by in Situ Polymerization of a Water‐Soluble EDOT‐Derived Monomer
    15
    Citation
    44
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Electronically conductive hydrogels have gained popularity in bioelectronic interfaces because their mechanical properties are similar to biological tissues, potentially preventing scaring in implanted electronics. Hydrogels have low elastic moduli, due to their high water content, which facilitates their integration with biological tissues. To achieve electronically conductive hydrogels, however, requires the integration of conducting polymers or nanoparticles. These “hard” components increase the elastic modulus of the hydrogel, removing their desirable compatibility with biological tissues, or lead to the heterogeneous distribution of the conductive material in the hydrogel scaffold. A general strategy to transform hydrogels into electronically conductive hydrogels without affecting the mechanical properties of the parent hydrogel is still lacking. Herein, a two‐step method is reported for imparting conductivity to a range of different hydrogels by in‐situ polymerization of a water‐soluble and neutral conducting polymer precursor: 3,4–ethylenedioxythiophene diethylene glycol (EDOT‐DEG). The resulting conductive hydrogels are homogenous, have conductivities around 0.3 S m −1 , low impedance, and maintain an elastic modulus of 5–15 kPa, which is similar to the preformed hydrogel. The simple preparation and desirable properties of the conductive hydrogels are likely to lead to new materials and applications in tissue engineering, neural interfaces, biosensors, and electrostimulation.
    Keywords:
    Gelatin
    Polypyrrole
    In situ polymerization
    The cytocompatibility of biological and synthetic materials is an important issue for biomaterials. Gelatin hydrogels are used as biomaterials because of their biodegradability. We have previously reported that the mechanical properties of gelatin hydrogels are improved by cross-linking with polyrotaxanes, a supramolecular compound composed of many cyclic molecules threaded with a linear polymer. In this study, the ability of gelatin hydrogels cross-linked by polyrotaxanes (polyrotaxane–gelatin hydrogels) for cell cultivation was investigated. Because the amount of polyrotaxanes used for gelatin fabrication is very small, the chemical composition was barely altered. The structure and wettability of these hydrogels are also the same as those of conventional hydrogels. Fibroblasts adhered on polyrotaxane–gelatin hydrogels and conventional hydrogels without any reduction or apoptosis of adherent cells. From these results, the polyrotaxane–gelatin hydrogels have the potential to improve the mechanical properties of gelatin without affecting cytocompatibility. Interestingly, when cells were cultured on polyrotaxane–gelatin hydrogels after repeated stress deformation, the cells were spontaneously oriented to the stretching direction. This cellular response was not observed on conventional hydrogels. These results suggest that the use of a polyrotaxane cross-linking agent can not only improve the strength of hydrogels but can also contribute to controlling reorientation of the gelatin.
    Gelatin
    Citations (23)
    Conducting polymer is a used material for many purposes, including active compound of chemical sensor. Polypyrrole, one type of conducting polymers, is frequently used because of its advantages, namely owing high conductivity, strong mechanical properties and relatively stable compound. This research was aimed to develop an alcohol sensor based on polypyrrole. Electropolymerisation of the polypyrrole was carried out using cyclic voltammetric technique. This research investigated some parameters electropolymerisation, namely variation of dopant electrolyte concentration, potential scan-rate, surface morphology of the polymer resulted, characteristic of the sensor performance when exposed to some alcohol compounds. According to the result of investigation, it was found that variation of potential scan-rate and dopant concentration has significant effect to the electropolymerisation process as well as to the resulted polymer, as indicated by the voltammogram profiles, the surface morphology of the resulted polymer and the response of resistance change of the polymer when exposed to the alcohol compounds.Keywords: polypyrrole, conducting polymer, alcohol sensor, cyclic voltammetry, electropolymerisation.
    Polypyrrole
    Horizontal scan rate
    Citations (1)
    This paper deals with a fundamental review of preparation methods, characterizations, thermal and environmental stabilities and practical applications of polypyrrole (PPy) conducting electroactive polymers. In this article some of the most important factors affecting the electrical, electrochemical, thermal and environmental stabilities of polypyrrole conducting polymers have also been reviewed.
    Polypyrrole
    Thermal Stability
    Electroactive polymers
    Citations (310)
    Deformations of conducting polymer films, such as polyaniline, polypyrrole and polythiophene, induced by electrochemical oxidation and reduction are presented and discussed in terms of the mechanisms. Soft actuators with variety of motions such as bending stick, breathing ring and shouting lip utilizing polypyrrole films are demonstrated. A new operation method is proposed using electrodeposited polypyrrole films.
    Polypyrrole
    Polythiophene
    Citations (3)
    Conducting polymers have been studied extensively because of the fundamental interest and the potentiality in practical applications. An outstanding property of the polymers is that the conductivity of some of them, such as polypyrrole (PPy), polyaniline and so on, is affected by the applied voltage. For the polypyrrole, the oxidized state is of an electronic conductor and the reduced state is essentially insulating. Using this property, the
    Polypyrrole
    Citations (0)