Association among cytokine profiles of innate and adaptive immune responses and clinical-virological features in untreated patients with chronic hepatitis B
Yurong GuYifan LianQiaolan ZhengZexuan HuangLin GuYanhua BiJing LiYanlin HuangYuankai WuLubiao ChenYuehua Huang
0
Citation
27
Reference
10
Related Paper
Abstract:
Abstract Background: Complete clearance of intracellular viruses depends on effector cells of innate and adaptive immune systems. This study aimed to identify the relationships among antiviral cytokines produced by natural killer (NK) and T cells and clinical-virological characteristics in untreated chronic hepatitis B (CHB) patients. Methods: We measured antiviral cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) produced by T, NK and natural killer T (NKT) cells, respectively, in a cohort with chronic hepatitis B virus (HBV) infection (CHB). We also correlated these cytokines with clinical-virological characteristics using a linear regression model. Results: levels of IFN-γ + and TNF-α + CD4 + and CD8 + T cells were significantly higher in immune active (IA) phase than in other phases. Immune tolerant (IT) patients showed the lowest expression of IFN-γ by NK and NKT cells, and TNF-α by NK cells. IFN-γ + , TNF-α + and IL-2 + CD4 + and CD8 + T cells frequencies were similar between IA and gray zone (GZ) phases. Principal component analysis based on cytokines confirmed that most IT patients significantly differed from inactive carriers (IC) and IA patients, while GZ patients were widely scattered. Multivariate analysis showed both T and NK cells producing IFN-γ and TNF-α, but not IL-2, had significant association with serum alanine aminotransferase (ALT). Moreover, IFN-γ + NKT cells were associated with HBV DNA, while IFN-γ + CD4 + and CD8 + T cells were correlated with age. Conclusion : HBV clinical phases are characterized by distinct cytokine signatures, which showed relationship to viral features in these untreated CHB patients.Summary Cells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the T cell receptors on NKT cells. There are two classes of NKT cells; invariant NKT cells that express a semi-invariant T cell receptor and variant NKT cells. This review summarises studies in murine models in which the effect of the activation, overexpression or deletion of NKT cells or only invariant NKT cells on atherosclerosis has been examined.
CD1D
CD1
ZAP70
Cite
Citations (37)
CCL18
Innate lymphoid cell
Intrinsic immunity
Cite
Citations (0)
Innate immunity is the front line of self-defense against microbial infection. After searching for natural substances that regulate innate immunity using an ex vivo Drosophila culture system, we identified a novel dimeric chromanone, gonytolide A, as an innate immune promoter from the fungus Gonytrichum sp. along with gonytolides B and C. Gonytolide A also increased TNF-α-stimulated production of IL-8 in human umbilical vein endothelial cells.
Cite
Citations (64)
Innate lymphoid cell
Cite
Citations (44)
Intrinsic immunity
Immunological memory
Cite
Citations (12)
Innate lymphoid cell
CCL18
Intrinsic immunity
Heterologous
Cite
Citations (50)
Abstract Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary—in part—as a function of 2′modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO–protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.
TLR9
Toll-Like Receptor 9
Cite
Citations (20)
This chapter contains sections titled: What constitutes the innate immune system? How does the innate immune system recognize pathogens? How does the innate immune system become activated? How do the innate and adaptive immune systems interact? How do we translate this information into an understanding of human allergic disease? Impact of disease on innate immunity Therapeutic exploitation of the biology of the innate immune system Conclusion References
Innate lymphoid cell
CCL18
Cite
Citations (1)
The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response.
Intrinsic immunity
Cite
Citations (58)
In mice, defense against an intraperitoneal Salmonella infection depends on a vigorous innate immune response. Mutations which lead to an inadequate early response to the pathogen thus identify genes involved in innate immunity. The best studied host resistance factor, NRAMP-1, is an endosomal membrane protein whose loss leads to an inability of the animals to hold the infection in check. However, innate defense against Salmonella is not restricted to mechanisms which directly attack the pathogen within macrophages. Here we have examined the contribution of the LBP, CD14 and TLR4 gene products to innate defense against Salmonella. To this end, we have generated mice which carry a wild-type allele of NRAMP-1, but which are deficient for the LBP, CD14 or TLR4 genes. Loss of any of these genes leads to a susceptibility to Salmonella as dramatic as that seen in animals lacking functional NRAMP-1 protein. This indicates that LBP, CD14 and TLR4 are all critical elements required in the proper induction of this innate defense system.
Cite
Citations (71)