logo
    Inversions
    1
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    INVERSIONS ARE INTRACHROMOSOMAL structural rearrangements. The commonest is the simple (or single) inversion. If the inversion coexists with another rearrangement in the same chromosome, it is a complex inversion. The simple inversion comprises a two-break event involving just one chromosome. The intercalary segment rotates 180°, reinserts, and the breaks unite (Fig. 9–1). The rearranged chromosome consists of a central inverted segment, and flanking distal, or noninverted segments. If the inverted segment includes the centromere, the inversion is pericentric; if it does not, it is paracentric. Figure 9–2 depicts two different pericentric inversions of chromosome 3. Note that the pericentric inversion has one break in the short arm and one in the long arm, whereas in the paracentric inversion both breaks occur in the same arm. Thus, when reading cytogenetic nomenclature, one can readily tell which is which: for example, 46,XX,inv(3)(p25q21) is pericentric and 46,XY,inv(11)(q21q23) is paracentric (inv = inversion). The clinical relevance of inversion chromosomes is that they can set the stage for the generation of recombinant (rec) gametes that may lead to abnormal pregnancy.The heterozygote is, other things being equal, a phenotypically normal person. The reorientation of a sequence of genetic material apparently does not influence its function, and breakage and reunion at most sites do not perturb the smooth running of the genome. Some inversions of the X may be an exception to this rule: a breakpoint involving the X long arm within the “critical region” can cause gonadal insufficiency. Some pericentric breakpoints occur at preferential sites, including 2p13, 2q21, 5q13, 5q31, 6q21, 10q22, and 12q13 (Kleczkowska et al., 1987); and certain paracentric breakpoints are likewise overrepresented (Madan, 1995).
    Keywords:
    Chromosomal inversion
    Breakpoint
    Chromosomal rearrangement
    Ambras syndrome (AMS) is a unique form of universal congenital hypertrichosis. In patients with this syndrome, the whole body is covered with fine long hair, except for areas where normally no hair grows. There is accompanying facial dysmorphism and teeth abnormalities, including retarded first and second dentition and absence of teeth. In 1993, Baumeister et al. reported an isolated case of Ambras syndrome in association with a pericentric inversion of chromosome 8. Subsequently, another patient with congenital hypertrichosis and rearrangement of chromosome 8 was reported by Balducci et al. (1998). Both of these patients have a breakpoint in 8q22 in common suggesting that this region of chromosome 8 contains a gene involved in regulation of hair growth. In order to precisely determine the nature of the rearrangement in the case of Ambras syndrome, we have used fluorescent in situ hybridization (FISH) analysis. We have cloned the inversion breakpoints in this patient and generated a detailed physical map of the inversion breakpoint interval. Analysis of the transcripts that map in the vicinity of the breakpoints revealed that the inversion does not disrupt a gene, and suggests that the phenotype is caused by a position effect.
    Breakpoint
    Chromosomal inversion
    Hypertrichosis
    Chromosomal rearrangement
    Position effect
    Positional cloning
    Citations (25)
    We studied a collection of 746 chromosome rearrangements all induced by the activity of members of the P family of transposable elements in Drosophila melanogaster. The chromosomes ranged from simple inversions to complex rearrangements. The distribution of complex rearrangement classes was of the kind expected if each rearrangement came about from a single multibreak event followed by random rejoining of chromosome segments, as opposed to a series of two-break events. Most breakpoints occurred at or very near (within a few hundred nucleotide pairs) the sites of preexisting P elements, but these elements were often lost during the rearrangement event. There were also a few cases of apparent gain of P elements. In cases in which both breakpoints of an inversion retained P elements, that inversion was capable of reverting at high frequencies to the original sequence or something close to it. This reversion occurred with sufficient precision to restore the function of a gene, held-up-b, which had been mutated by the breakpoint. However, some of the reversions had acquired irregularities at the former breakpoints that were detectable either by standard cytology or by molecular methods. The revertants themselves retained the ability to undergo further rearrangements depending on the presence of P elements. We interpret these results to rule out the simplest hypotheses of rearrangement formation that involve cointegrate structures or homologous recombination. The data provide a general picture of the rearrangement process and its possible relationship to transposition.
    Citations (155)
    Abstract Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster . We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs are completely suppressed within 500 kb of inversion breakpoints, are severely reduced within 2 Mb of an inversion breakpoint, and increase above wildtype levels 2-4 Mb from the breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, occur at wildtype levels near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break location or frequency. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.
    Breakpoint
    Chromosomal inversion
    Chromosomal rearrangement
    Citations (1)
    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ~13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ~9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics.
    Breakpoint
    Chromosomal inversion
    Gene rearrangement
    Segmental duplication
    Chromosomal rearrangement
    Citations (33)
    Abstract We have used the inversion system of Drosophila pseudoobscura to investigate how genetic flux occurs among the gene arrangements. The patterns of nucleotide polymorphism at seven loci were used to infer gene conversion events between pairs of different gene arrangements. We estimate that the average gene conversion tract length is 205 bp and that the average conversion rate is 3.4 × 10−6, which is 2 orders of magnitude greater than the mutation rate. We did not detect gene conversion events between all combinations of gene arrangements even though there was sufficient nucleotide variation for detection and sufficient opportunity for exchanges to occur. Genetic flux across the inverted chromosome resulted in higher levels of differentiation within 0.1 Mb of inversion breakpoints, but a slightly lower level of differentiation in central inverted regions. No gene conversion events were detected within 17 kb of an inversion breakpoint suggesting that the formation of double-strand breaks is reduced near rearrangement breakpoints in heterozygotes. At least one case where selection rather than proximity to an inversion breakpoint is responsible for reduction in polymorphism was identified.
    Breakpoint
    Drosophila pseudoobscura
    Gene conversion
    Chromosomal inversion
    Chromosomal rearrangement
    Concerted evolution
    Citations (76)
    Abstract Cytogenetic analysis of DNA from a girl with severe psychomotor retardation revealed a de novo pericentric inversion of chromosome 2: 46,XX,inv(2)(p15q24.2). In order to elucidate the possible role of the inversion in the girl's abnormal phenotype, we analyzed the inversion breakpoints. FISH analysis revealed BAC clones spanning the breakpoints at 2p and 2q of the inversion. Southern blot hybridization with DNA probes from the BAC regions was used to refine the localization of the breakpoints, followed by inverse‐PCR which enabled us to sequence the inversion breakpoints. We found a complex chromosomal rearrangement, including five breakpoints, four at 2q and one at 2p joined with minor insertions/deletions of a few bases. The breakpoint at 2p was within the NRXN1 gene that has previously been associated with autism, intellectual disabilities, and psychiatric disorders. In 2q, the breakpoints disrupted two genes, TANC1 and RBMS1 ; the phenotypic effect of these genes is not currently known. © 2011 Wiley‐Liss, Inc.
    Breakpoint
    Chromosomal inversion
    Southern blot
    Chromosomal rearrangement
    Psychomotor retardation
    Citations (10)
    Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster. We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs outside of the proximal inversion breakpoint are distributed in a distance-dependent manner, with strongest suppression near the inversion breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, are not suppressed near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break formation. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.
    Breakpoint
    Chromosomal inversion