Boosting and Additive Trees
32
Citation
0
Reference
10
Related Paper
Citation Trend
Keywords:
Boosting
Gradient boosting
Gradient boosting
Boosting
Extreme Learning Machine
Cite
Citations (1)
Boosting algorithms are frequently used in applied data science and in research. To date, the distinction between boosting with either gradient descent or second-order Newton updates is often not made in both applied and methodological research, and it is thus implicitly assumed that the difference is irrelevant. The goal of this article is to clarify this situation. In particular, we present gradient and Newton boosting, as well as a hybrid variant of the two, in a unified framework. We compare these boosting algorithms with trees as base learners using various datasets and loss functions. Our experiments show that Newton boosting outperforms gradient and hybrid gradient-Newton boosting in terms of predictive accuracy on the majority of datasets. We also present evidence that the reason for this is not faster convergence of Newton boosting. In addition, we introduce a novel tuning parameter for tree-based Newton boosting which is interpretable and important for predictive accuracy.
Boosting
Gradient boosting
Cite
Citations (4)
Gradient boosting
Boosting
Cite
Citations (4)
In this survey, we discuss several different types of gradient boosting algorithms and illustrate their mathematical frameworks in detail: 1. introduction of gradient boosting leads to 2. objective function optimization, 3. loss function estimations, and 4. model constructions. 5. application of boosting in ranking.
Gradient boosting
Boosting
Cite
Citations (13)
Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm, when the empirical risk to minimize is not differentiable, in order to introduce a novel boosting approach, called proximal boosting. It comes with a companion algorithm inspired by [1] and called residual proximal boosting, which is aimed at better controlling the approximation error. Theoretical convergence is proved for these two procedures under different hypotheses on the empirical risk and advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy.
Boosting
Gradient boosting
Cite
Citations (0)
Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm when the empirical risk to minimize is not differentiable. In addition , the novel boosting approach, called accelerated proximal boosting, benefits from Nesterov's acceleration in the same way as gradient boosting [Biau et al., 2018]. Advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy.
Boosting
Gradient boosting
Cite
Citations (1)
Boosting
Gradient boosting
Cite
Citations (44)
Excellent ranking power along with well calibrated probability estimates are needed in many classification tasks. In this paper, we introduce a technique, Calibrated Boosting-Forest that captures both. This novel technique is an ensemble of gradient boosting machines that can support both continuous and binary labels. While offering superior ranking power over any individual regression or classification model, Calibrated Boosting-Forest is able to preserve well calibrated posterior probabilities. Along with these benefits, we provide an alternative to the tedious step of tuning gradient boosting machines. We demonstrate that tuning Calibrated Boosting-Forest can be reduced to a simple hyper-parameter selection. We further establish that increasing this hyper-parameter improves the ranking performance under a diminishing return. We examine the effectiveness of Calibrated Boosting-Forest on ligand-based virtual screening where both continuous and binary labels are available and compare the performance of Calibrated Boosting-Forest with logistic regression, gradient boosting machine and deep learning. Calibrated Boosting-Forest achieved an approximately 48% improvement compared to a state-of-art deep learning model. Moreover, it achieved around 95% improvement on probability quality measurement compared to the best individual gradient boosting machine. Calibrated Boosting-Forest offers a benchmark demonstration that in the field of ligand-based virtual screening, deep learning is not the universally dominant machine learning model and good calibrated probabilities can better facilitate virtual screening process.
Gradient boosting
Boosting
Ensemble Learning
Benchmark (surveying)
Cite
Citations (0)
Boosting algorithms are frequently used in applied data science and in research. To date, the distinction between boosting with either gradient descent or second-order Newton updates is often not made in both applied and methodological research, and it is thus implicitly assumed that the difference is irrelevant. The goal of this article is to clarify this situation. In particular, we present gradient and Newton boosting, as well as a hybrid variant of the two, in a unified framework. We compare these boosting algorithms with trees as base learners using various datasets and loss functions. Our experiments show that Newton boosting outperforms gradient and hybrid gradient-Newton boosting in terms of predictive accuracy on the majority of datasets. We also present evidence that the reason for this is not faster convergence of Newton boosting. In addition, we introduce a novel tuning parameter for tree-based Newton boosting which is interpretable and important for predictive accuracy.
Boosting
Gradient boosting
Cite
Citations (6)