logo
    Reconstruction of nitrogenase predecessors suggests origin from maturase-like proteins
    1
    Citation
    78
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    ABSTRACT The evolution of biological nitrogen fixation, uniquely catalyzed by nitrogenase enzymes, has been one of the most consequential biogeochemical innovations over life’s history. Though understanding the early evolution of nitrogen fixation has been a longstanding goal from molecular, biogeochemical, and planetary perspectives, its origins remain enigmatic. In this study, we reconstructed the evolutionary histories of nitrogenases, as well as homologous maturase proteins that participate in the assembly of the nitrogenase active-site cofactor but are not able to fix nitrogen. We combined phylogenetic and ancestral sequence inference with an analysis of predicted functionally divergent sites between nitrogenases and maturases to infer the nitrogen-fixing capabilities of their shared ancestors. Our results provide phylogenetic constraints to the emergence of nitrogen fixation and are consistent with a model wherein nitrogenases emerged from maturase-like predecessors. Though the precise functional role of such a predecessor protein remains speculative, our results highlight evolutionary contingency as a significant factor shaping the evolution of a biogeochemically essential enzyme. SIGNIFICANCE STATEMENT The origin of nitrogenase-catalyzed nitrogen fixation was a transformative event in life’s history, garnering long-term study from molecular, biogeochemical, and planetary perspectives. Reconstruction of ancestral nitrogenases suggests that the protein sequence space capable of yielding a nitrogen-fixing enzyme in the past was likely more constrained than previously thought. Specifically, here we show that nitrogenases likely evolved from ancestors that resemble maturases, homologs that today participate in nitrogenase cofactor assembly, contrary to the commonly accepted view that maturases evolved from a nitrogenase ancestor. We further submit that the molecular architecture that may have been required for nitrogenase origins was unlikely to have been shaped by the same environmental drivers often implicated in the evolution of nitrogen fixation. If this decoupling is found to be a recurring pattern in metabolic origins, then the presented results would undercut the common, systems-focused rationale of using ancient environmental conditions to explain the timing of critical and singular biogeochemical innovations in life’s past.
    Summary Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo‐nitrogenase, the V‐nitrogenase and the Fe‐only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii , a common model soil diazotroph. In the growth medium of A. vinelandii , metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal‐replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo‐nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N 2 fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal‐limited soil environments.
    Azotobacter vinelandii
    Azotobacter
    The extent of recovery of nitrogenase activity of Gloeothece transferred from an atmosphere of O2 to air depended on the duration of exposure to O2. Activity recovered at increasing rates after up to 24 h exposure to O2 and a lag before detection of activity, present after short (1 h) exposure times, disappeared with longer exposures. Synthesis of nitrogenase de novo was implicated, since chloramphenicol, tetracycline, or repressive levels of NH+4, prevented recovery of activity. Specific radioimmunoassay of the rate of synthesis of the MoFe protein of nitrogenase under O2 correlated well with the activity measurements, and indicate that a shift from air to O2 only transiently represses nitrogenase synthesis.
    De novo synthesis
    This paper demonstrates that MWCNTs can effectively increase the number of nodules and promote the activity of nitrogenase by the regulation of genes involved in the symbiotic nitrogen fixation system of legumes.
    Citations (58)
    Biological nitrogen fixation is mediated by the nitrogenase enzyme system that catalyses the ATP dependent reduction of atmospheric dinitrogen to ammonia. Nitrogenase consists of two component metalloproteins, the MoFe-protein with the FeMo-cofactor that provides the active site for substrate reduction, and the Fe-protein that couples ATP hydrolysis to electron transfer. An overview of the nitrogenase system is presented that emphasizes the structural organization of the proteins and associated metalloclusters that have the remarkable ability to catalyse nitrogen fixation under ambient conditions. Although the mechanism of ammonia formation by nitrogenase remains enigmatic, mechanistic inferences motivated by recent developments in the areas of nitrogenase biochemistry, spectroscopy, model chemistry and computational studies are discussed within this structural framework.
    Citations (1,106)
    The International Biological Programme served as a focal point for studies on biological nitrogen fixation during the 1960s. The introduction of the acetylene reduction technique for measuring nitrogenase activity in the field led to estimates becoming available of the contribution of lichens, blue-green algae, nodulated non-legumes and bacterial-grass associations, as well as of legumes. Other studies carried out on the physiology and biochemistry of the process led to the eventual purification and characterization of the nitrogenase enzyme. These studies, collectively, provided the springboard for current work, so essential in view of the present energy crisis, on how to increase the use and efficiency of nitrogen-fixing plants, on the metabolic regulation of the nitrogenase enzyme and on the genetics of the nitrogen-fixing process, both in higher plants and in free-living micro-organisms.
    Citations (6)
    Biological nitrogen fixation is an inherent trait exclusive to a select number of prokaryotes. Although molybdenum nitrogenase is the dominant catalyst for dinitrogen reduction, some diazotrophs also contain one or two additional types of nitrogenase that use alternative metal content as the active-site cofactor. The occurrence of alternative nitrogenases has not been well studied due to the discriminatory expression of the molybdenum nitrogenase and lack of comprehensive genomic data. This study reports on the genomic analysis of 87 unique species containing alternative nitrogenase sequences. The distribution of nitrogen-fixing genes within these species from distinct taxonomic groups shows the presence of the minimum gene set required for nitrogen fixation, including catalytic and biosynthetic enzymes of the Mo-dependent system (NifHDKENB) and the varying occurrence of additional Nif-dedicated components. These include NifS and NifU, found primarily in aerobic species, thus suggesting that these genes are necessary to accommodate the high demand for Fe-S clusters during aerobic nitrogen fixation.
    Citations (37)